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The Open Verifi cation Methodology (OVM), a joint develop-

ment initiative between Mentor Graphics® and Cadence® Design 

Systems, provides the fi rst open, interoperable, SystemVerilog 

verifi cation methodology in the industry. The OVM provides 

a library of base classes that allow users to create modular, 

reusable verifi cation environments in which components talk to 

each other via standard transaction-level modeling (TLM) inter-

faces. It also enables intra- and inter-company reuse through 

a common methodology with classes for developing stimulus 

sequences and block-to-system reuse. 

Supported on multiple verifi cation platforms, the OVM is the de 

facto standard methodology, ideally suited to speed verifi ca-

tion for both novice and expert verifi cation engineers. Built on 

the success of the Advanced Verifi cation Methodology (AVM) 

from Mentor Graphics and the Universal Reuse Methodology 

(URM) from Cadence, the OVM brings the combined power of 

these two leading companies together to deliver on the promise 

of SystemVerilog. The OVM offers established interoperability 

mechanisms for verifi cation IP (VIP), transaction-level and RTL 

models, and integration with other languages commonly used 

in production fl ows. 

The Promise of SystemVerilog
Engineers designing and verifying complex electronic devices 

love standards. Standard languages, libraries, interchange 

formats, interfaces, and connectors make it much easier for de-

sign representations, EDA tools, and fi nal products to interop-

erate. Thus, when a new standard comes along, there is a great 

deal of excitement and anticipation for the benefi ts engineers 

will accrue by adoption. 

The SystemVerilog language is one such standard. After several 

years of intensive development work, it was ratifi ed by the IEEE 

as Std. 1800-2005. As the industry’s fi rst hardware design 

and verifi cation language (HDVL), SystemVerilog held out the 

promise of being a single expressive format widely adopted by 

engineers and supported by all manner of EDA tools. This would 

allow designs, models and verifi cation components to be easily 

moved from one tool to another.

In truth, a language alone is not enough to defi ne verifi cation 

interoperability. Tool portability is critical, but beyond that it’s 

necessary for verifi cation components to follow a common 

methodology. Language features are used to assemble a set of 

building blocks that can be leveraged to create a sophisticated 

testbench or verifi cation environment. In the object-oriented 

world of SystemVerilog verifi cation, these building blocks are 

class libraries. A methodology with examples then shows us-

ers how to leverage the libraries to build reusable verifi cation 

environments. Figure 1 shows the typical hierarchy relating the 

language and libraries to the simulator that runs them.

While all the major EDA vendors adopted an approach similar 

to Figure 1, the details differed. Each vendor had a different 

methodology, a differ-

ent class library, and 

different language 

features used in its 

library and recom-

mended by its meth-

odology. Although the 

methodologies were 

internally consistent, 

they did not work 

with each other, thus 

compromising the 

promise of System-

Verilog interoper-

ability. In addition, 

the fact that different 

simulators supported 

different subsets of 

the language, coupled 

with the fact that 

some methodologies 

were proprietary and restricted, meant that it was not possible 

to run VIP and verifi cation code on multiple simulators. 

Even assuming that all major simulators would eventually 

support the same set of language features, the existence of 

multiple class libraries and methodologies meant that VIP was 

not interoperable. Since the different methodologies defi ned 

different mechanisms for communicating between VIP and 

testbenches, combining components from different vendors 

was such a signifi cant challenge that it offset the advantage of 

licensing pre-verifi ed VIP in the fi rst place. Designers and veri-

fi cation engineers were not seeing the benefi t they expected 

from SystemVerilog adoption and urged the EDA vendors to 

address the situation.

A Truly Open SystemVerilog Methodology
In response, Cadence and Mentor Graphics developed a com-

mon methodology and a class library that runs on simulators 

from both companies. Announced on August 16, 2007, the 

OVM spans the class library and methodology layers of the 

SystemVerilog verifi cation hierarchy, as shown in Figure 2. 

The class library is supported by both the Mentor Graphics 

Figure 1: SystemVerilog Verifi cation 
Hierarchy
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Questa® and Cadence Incisive® verifi cation platforms. Thus, 

any VIP or testbenches built using this library will run on ei-

ther platform with no conversions, translations, or extra effort 

required. In fact, since the OVM is delivered in open-source 

format, the code will run on any simulator that supports the 

SystemVerilog standard.

As previously noted, verifi cation interoperability requires more 

than common language support. Because of the alignment on 

class library and methodology, VIP available from Cadence, 

Mentor, or their partners will support the OVM and will inter-

operate seamlessly with testbenches also developed using the 

OVM and its library. This is an enormous benefi t for both VIP 

providers and verifi cation engineers developing testbenches.

Under the OVM, communication among VIP and testbench com-

ponents uses a SystemVerilog implementation of the widely 

adopted transaction-level modeling (TLM) standard originally 

developed by the Open SystemC Initiative (OSCI). In addition to 

fostering interoperability among SystemVerilog components, 

the choice of TLM makes it easy to integrate verifi cation com-

ponents written in other languages, such as e and SystemC, 

and to enable reuse of verifi cation components, models, and 

environments at multiple levels of abstraction—from the block 

up to the system level.

The SystemVerilog OVM class library source code, usage 

examples, and supporting documentation are now available on 

OVM World at www.ovmworld.org. This is a completely open 

Web site, placing no restrictions on who can access its con-

tents. The OVM class library source code is being released 

under the terms of the Apache 2.0 license agreement, a widely 

used open-source agreement that stipulates little more than 

retention of copyright notices. Customers, partners, standards 

organizations, and even EDA competitors of Mentor and Ca-

dence can download the source code and use the OVM without 

having any monetary obligations to either company.

The object-oriented nature of the OVM and its class library 

means that most users will be able to extend its functional-

ity without having to modify the source code. However, the 

Apache 2.0 license allows modifi cations or derivations if so de-

sired. User community input will be solicited on the Web site to 

help the OVM evolve with additional functionality in the future.

Built On Proven Verifi cation Technology
The OVM is “new” in the sense that it was recently announced. 

However, the OVM is already proven because it is built on 

well-established verifi cation technologies and methodologies, 

refl ecting more than ten years of industry best practices. Spe-

cifi cally, the OVM is based on, and backward compatible with, 

the Mentor Graphics AVM 3.0 and Cadence URM 6.2 versions.

The AVM was fi rst announced by Mentor in 2004. Since then it 

has been widely adopted by many verifi cation teams. AVM 3.0, 

available since May 2006, is the third generation of the meth-

odology, adding new functionality and refl ecting considerable 

input from the user community. Verifi cation engineers using 

AVM 3.0 will be able to migrate quickly and easily to the OVM, 

providing portability and interoperability.

The URM was introduced by Cadence in 2006, expanding to 

encompass SystemVerilog support for the object-oriented 

verifi cation techniques available since 2002 in the e Reuse 

Methodology (eRM). Verifi cation engineers and VIP partners 

using the URM 6.2 release will be able to convert seamlessly to 

OVM compliance. 

The rapid availability and robustness of the OVM is due to the 

complementary nature of the two predecessor methodologies, 

both of which were based on TLM communication and closely 

aligned in terms of methodology and functionality. The actual 

implementation of the OVM is a truly collaborative effort by 

both companies to provide the features required of such a 

state-of-the-art methodology. The collaboration involved a 

great deal of “give-and-take” from both companies, combining 

the best features, usability, and SystemVerilog knowledge gar-

nered from many years of experience across the joint develop-

ment team. 

Figure 2: OVM Verifi cation Hierarchy
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The OVM Library
Figure 3 is a Unifi ed Modeling Language (UML) diagram of 

the OVM library. The library and methodology provide all the 

technology needed to construct reusable constrained-random, 

coverage-driven testbenches. This technology enables an un-

precedented level of fl exibility, customization, and reuse.

The OVM provides the TLM-based infrastructure for building 

modular, reusable verifi cation components that communicate 

through well-defi ned transaction-level interfaces. Its class library 

allows users to create sequential constrained-random stimulus, 

collect and analyze functional coverage information, and include 

assertions as fi rst-class members of the confi gurable testbench 

environment. Specifi c features include the following.

• TLM communication as the underlying foundation for connect-

ing verifi cation components to facilitate modularity and reuse

• Common user-extensible phasing to coordinate execution 

activity of all components in the environment

• Ability to modify testbench environments on-the-fl y and write 

multiple tests from the same base environment with minimal 

code changes

• Common confi guration interface, so all components may be 

customized on a per-type or per-instance basis without chang-

ing the underlying code

• Straightforward test writer interface for confi guring a test-

bench and specifying constrained layered sequential stimulus

• Common message reporting and formatting interface

Feature Overview
TLM Communication

OVM components communicate via standard TLM interfaces, 

which improve reusability. TLM defi nes a standard set of inter-

face methods to defi ne communication semantics but sepa-

rates the interfaces from their implementations. Using TLM, 

a component may communicate via its interface to any other 

component that implements that interface. Thus, one com-

ponent may be connected at the transaction level to another 

implemented at multiple levels of abstraction. The common 

semantics of TLM communication permits components to be 

swapped in and out without affecting the rest of the environ-

ment. The OVM has built-in checking to ensure that communi-

cation paths are defi ned and connected correctly.

Phasing and Execution Management

To be able to have VIP from multiple sources work together in 

a single environment, the OVM defi nes a series of phases that 

all verifi cation components go through during the execution 

of a simulation (see Figure 4). Once the top-level environment 

is constructed in the new() phase, child components are then 

instantiated, constructed, and confi gured hierarchically during 

post_new(). The connections between components are defi ned 

during the elaboration() phase, and these connections are 

checked and resolved in the post_elaboration() phase. At the 

end of post_elaboration(), all components in the environment 

are allocated, connected, and ready for use.

Next, the pre_run() phase allows the test to further customize 

and confi gure verifi cation components and/or the design under 

Figure 3: The OVM Class Library



www.ovmworld.org

test (DUT) prior to executing the test in the run() phase. At the 

conclusion of run(), which is a task, three reporting phases are 

executed: extract() allows results to be gathered from specifi c 

components, check() validates the results to determine the 

pass/fail status of the test, and report() lets each component 

report its results and status to a log fi le or the display, using 

the message severity and formatting routines.

It is possible to defi ne user-, project-, or company-specifi c 

phases and insert these into the default list. This ensures they 

are run on every component at the appropriate time during the 

simulation. The execution of phases is managed automatically 

throughout the environment at every level of the hierarchy.

Testbench/Environment Customization

The OVM does not require instantiation of individual compo-

nents, as in the following example.

red my_a;
my_a = new(“a”,this); // hard-coded instantiation/al-
location

Instead, the OVM facilitates reuse and customization through a 

class factory, which is a standard object-oriented technique al-

lowing components to be instantiated and initialized on-the-fl y 

from a central location as follows.

ovm_component cmp;
cmp = create_component(“red”, “a”); // fl exible instan-
tiation
$cast(my_a,cmp);

All components in the OVM are extended from ovm_component, 

which is the return type of the create_component() method of 

the class factory. Thus, the return value must be cast to the 

specifi c component (my_a) that, by default, is now of type a_c, 

as it was in the original code. The class factory also allocates 

and initializes the component before returning it. The advan-

tage of using the class factory is that it may be overridden to 

customize the environment.

ovm_factory::set_type_override(“red”, “blue”);
ovm_factory::set_inst_override(“top.a”, “red”, “green”);

The set_type_override() method tells the class factory to return 

a component of type blue whenever a red is requested. The en-

vironment coded in this example now has a component of type 

blue for my_a (and any other instance of the red class), allowing 

a different set of behaviors without changing the environment 

code, simply because the environment was written to allow 

this fl exibility. The use of TLM interfaces between components 

facilitates this capability by enforcing the encapsulation of 

communication. As long as blue has the same interfaces as red, 

the rest of the environment is perfectly compatible. Similarly, 

the type returned by the class factory may also be overridden 

on a per-instance bases using set_inst_override().

Confi guration

One of the keys to reuse is being able to customize and con-

fi gure components based on their context. The OVM manages 

this process by allowing components to specify confi guration 

information for their children. During the execution of the 

post_new() phase, each component is responsible for checking 

whether its internal properties have been so confi gured, and, 

if they have, it sets those properties to the confi gured values. 

The build process continues top-down, allowing each compo-

nent to modify the confi guration and/or instantiation of its 

child components.

class my_env extends ovm_env;
  block b;
 ...
  function void build(); // called from post_new()
    set_confi g_int(“b”, “is_active”, 0);
    ...
    b.build();
  endfunction
endclass

class block extends ovm_component;
  driver d;
  bit is_active = 1;

Figure 4: Simulation Phases of the OVM
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  function void build();
    if(get_confi g_int(“is_active”, is_active)
      if(is_active) begin
        cmp = create_component(“driver”, “d”); 
        $cast(d,cmp);
        d.build();
      end
  endfunction
endclass

In this example, the environment directs the confi guration for 

the block to set its is_active bit to 0. All OVM components are 

responsible for getting their own confi guration information, 

so in its build process, the block component checks to get the 

value of is_active from the global table. If a value is found, it is 

used; otherwise, the default value is used. Confi guration values 

may be set for int, string, and ovm_object parameters, so this 

simple text-based interface (including wildcarding of names) 

can be used to set the confi guration value for any information 

required, depending on the component being used.

In this case, the block is set to be inactive (is_active == 0). 

The block component continues its build process by using this 

confi guration information to control the confi guration and set 

up of its children. In this case, it uses the value of is_active to 

control whether to instantiate a driver component. This single 

block component may now be reused and controlled in many 

different environments, each of which may choose to activate 

the driver or not. By designing components to provide such 

fl exibility, it becomes straightforward to create (or purchase) a 

library of verifi cation components that may be reused without 

altering its internal contents.

Sequential Layered Stimulus

A third way that the OVM facilitates the customization of par-

ticular tests is through the specifi cation of the actual stimuli 

that will be executed. The OVM enables the rapid creation of 

interesting transaction stimulus patterns without requiring de-

tailed knowledge of the verifi cation environment infrastructure. 

This important feature provides allows non-verifi cation experts 

to quickly create interesting test scenarios that can be reused 

across multiple tests, verifi cation environment topologies, and 

projects. Sequential stimulus can range from a purely directed 

approach to a constrained-random approach that allows con-

straint layering via class factories, such as that described above. 

Once defi ned, stimulus sequences can be reused as a subset 

of other stimulus sequences in order to create larger and more 

interesting test scenarios. Various scenarios can be executed in 

order to exercise the design with interesting mixes of the stimu-

lus sequences. Complex protocols can be modeled by layering 

sequences in a hierarchical fashion that provides clean abstrac-

tion for each level of the hierarchy. For large verifi cation environ-

ments, multiple interfaces can be controlled and coordinated 

from a central mechanism; known as a virtual sequence.

Summary
Successful verifi cation projects require more than a standard 

language. A sophisticated methodology is needed to build 

leading-edge testbenches, ensure interoperability, and promote 

verifi cation reuse. With several widely used but incompatible 

verifi cation methodologies available, the industry has been 

clear in its desire for cooperation among EDA vendors to end 

the “methodology wars.”

The co-development and endorsement by Mentor and Cadence 

give the OVM credibility and viability as the answer to the 

industry’s concerns. The OVM is clearly the only interoperable, 

open, and proven verifi cation methodology. With the release 

of the OVM, there is no longer a methodology war raging. The 

OVM is already the clear winner. 


