
Open Verifi cation Methodology (OVM)
Built on the success of the Advanced Verifi cation Methodology (AVM) from Mentor Graphics

and the Universal Reuse Methodology (URM) from Cadence, the OVM brings the combined

power of these two leading companies together to deliver on the promise of SystemVerilog.

www.ovmworld.org

The Open Verifi cation Methodology (OVM), a joint develop-

ment initiative between Mentor Graphics® and Cadence® Design

Systems, provides the fi rst open, interoperable, SystemVerilog

verifi cation methodology in the industry. The OVM provides

a library of base classes that allow users to create modular,

reusable verifi cation environments in which components talk to

each other via standard transaction-level modeling (TLM) inter-

faces. It also enables intra- and inter-company reuse through

a common methodology with classes for developing stimulus

sequences and block-to-system reuse.

Supported on multiple verifi cation platforms, the OVM is the de

facto standard methodology, ideally suited to speed verifi ca-

tion for both novice and expert verifi cation engineers. Built on

the success of the Advanced Verifi cation Methodology (AVM)

from Mentor Graphics and the Universal Reuse Methodology

(URM) from Cadence, the OVM brings the combined power of

these two leading companies together to deliver on the promise

of SystemVerilog. The OVM offers established interoperability

mechanisms for verifi cation IP (VIP), transaction-level and RTL

models, and integration with other languages commonly used

in production fl ows.

The Promise of SystemVerilog
Engineers designing and verifying complex electronic devices

love standards. Standard languages, libraries, interchange

formats, interfaces, and connectors make it much easier for de-

sign representations, EDA tools, and fi nal products to interop-

erate. Thus, when a new standard comes along, there is a great

deal of excitement and anticipation for the benefi ts engineers

will accrue by adoption.

The SystemVerilog language is one such standard. After several

years of intensive development work, it was ratifi ed by the IEEE

as Std. 1800-2005. As the industry’s fi rst hardware design

and verifi cation language (HDVL), SystemVerilog held out the

promise of being a single expressive format widely adopted by

engineers and supported by all manner of EDA tools. This would

allow designs, models and verifi cation components to be easily

moved from one tool to another.

In truth, a language alone is not enough to defi ne verifi cation

interoperability. Tool portability is critical, but beyond that it’s

necessary for verifi cation components to follow a common

methodology. Language features are used to assemble a set of

building blocks that can be leveraged to create a sophisticated

testbench or verifi cation environment. In the object-oriented

world of SystemVerilog verifi cation, these building blocks are

class libraries. A methodology with examples then shows us-

ers how to leverage the libraries to build reusable verifi cation

environments. Figure 1 shows the typical hierarchy relating the

language and libraries to the simulator that runs them.

While all the major EDA vendors adopted an approach similar

to Figure 1, the details differed. Each vendor had a different

methodology, a differ-

ent class library, and

different language

features used in its

library and recom-

mended by its meth-

odology. Although the

methodologies were

internally consistent,

they did not work

with each other, thus

compromising the

promise of System-

Verilog interoper-

ability. In addition,

the fact that different

simulators supported

different subsets of

the language, coupled

with the fact that

some methodologies

were proprietary and restricted, meant that it was not possible

to run VIP and verifi cation code on multiple simulators.

Even assuming that all major simulators would eventually

support the same set of language features, the existence of

multiple class libraries and methodologies meant that VIP was

not interoperable. Since the different methodologies defi ned

different mechanisms for communicating between VIP and

testbenches, combining components from different vendors

was such a signifi cant challenge that it offset the advantage of

licensing pre-verifi ed VIP in the fi rst place. Designers and veri-

fi cation engineers were not seeing the benefi t they expected

from SystemVerilog adoption and urged the EDA vendors to

address the situation.

A Truly Open SystemVerilog Methodology
In response, Cadence and Mentor Graphics developed a com-

mon methodology and a class library that runs on simulators

from both companies. Announced on August 16, 2007, the

OVM spans the class library and methodology layers of the

SystemVerilog verifi cation hierarchy, as shown in Figure 2.

The class library is supported by both the Mentor Graphics

Figure 1: SystemVerilog Verifi cation
Hierarchy

www.ovmworld.org

Questa® and Cadence Incisive® verifi cation platforms. Thus,

any VIP or testbenches built using this library will run on ei-

ther platform with no conversions, translations, or extra effort

required. In fact, since the OVM is delivered in open-source

format, the code will run on any simulator that supports the

SystemVerilog standard.

As previously noted, verifi cation interoperability requires more

than common language support. Because of the alignment on

class library and methodology, VIP available from Cadence,

Mentor, or their partners will support the OVM and will inter-

operate seamlessly with testbenches also developed using the

OVM and its library. This is an enormous benefi t for both VIP

providers and verifi cation engineers developing testbenches.

Under the OVM, communication among VIP and testbench com-

ponents uses a SystemVerilog implementation of the widely

adopted transaction-level modeling (TLM) standard originally

developed by the Open SystemC Initiative (OSCI). In addition to

fostering interoperability among SystemVerilog components,

the choice of TLM makes it easy to integrate verifi cation com-

ponents written in other languages, such as e and SystemC,

and to enable reuse of verifi cation components, models, and

environments at multiple levels of abstraction—from the block

up to the system level.

The SystemVerilog OVM class library source code, usage

examples, and supporting documentation are now available on

OVM World at www.ovmworld.org. This is a completely open

Web site, placing no restrictions on who can access its con-

tents. The OVM class library source code is being released

under the terms of the Apache 2.0 license agreement, a widely

used open-source agreement that stipulates little more than

retention of copyright notices. Customers, partners, standards

organizations, and even EDA competitors of Mentor and Ca-

dence can download the source code and use the OVM without

having any monetary obligations to either company.

The object-oriented nature of the OVM and its class library

means that most users will be able to extend its functional-

ity without having to modify the source code. However, the

Apache 2.0 license allows modifi cations or derivations if so de-

sired. User community input will be solicited on the Web site to

help the OVM evolve with additional functionality in the future.

Built On Proven Verifi cation Technology
The OVM is “new” in the sense that it was recently announced.

However, the OVM is already proven because it is built on

well-established verifi cation technologies and methodologies,

refl ecting more than ten years of industry best practices. Spe-

cifi cally, the OVM is based on, and backward compatible with,

the Mentor Graphics AVM 3.0 and Cadence URM 6.2 versions.

The AVM was fi rst announced by Mentor in 2004. Since then it

has been widely adopted by many verifi cation teams. AVM 3.0,

available since May 2006, is the third generation of the meth-

odology, adding new functionality and refl ecting considerable

input from the user community. Verifi cation engineers using

AVM 3.0 will be able to migrate quickly and easily to the OVM,

providing portability and interoperability.

The URM was introduced by Cadence in 2006, expanding to

encompass SystemVerilog support for the object-oriented

verifi cation techniques available since 2002 in the e Reuse

Methodology (eRM). Verifi cation engineers and VIP partners

using the URM 6.2 release will be able to convert seamlessly to

OVM compliance.

The rapid availability and robustness of the OVM is due to the

complementary nature of the two predecessor methodologies,

both of which were based on TLM communication and closely

aligned in terms of methodology and functionality. The actual

implementation of the OVM is a truly collaborative effort by

both companies to provide the features required of such a

state-of-the-art methodology. The collaboration involved a

great deal of “give-and-take” from both companies, combining

the best features, usability, and SystemVerilog knowledge gar-

nered from many years of experience across the joint develop-

ment team.

Figure 2: OVM Verifi cation Hierarchy

www.ovmworld.org

The OVM Library
Figure 3 is a Unifi ed Modeling Language (UML) diagram of

the OVM library. The library and methodology provide all the

technology needed to construct reusable constrained-random,

coverage-driven testbenches. This technology enables an un-

precedented level of fl exibility, customization, and reuse.

The OVM provides the TLM-based infrastructure for building

modular, reusable verifi cation components that communicate

through well-defi ned transaction-level interfaces. Its class library

allows users to create sequential constrained-random stimulus,

collect and analyze functional coverage information, and include

assertions as fi rst-class members of the confi gurable testbench

environment. Specifi c features include the following.

• TLM communication as the underlying foundation for connect-

ing verifi cation components to facilitate modularity and reuse

• Common user-extensible phasing to coordinate execution

activity of all components in the environment

• Ability to modify testbench environments on-the-fl y and write

multiple tests from the same base environment with minimal

code changes

• Common confi guration interface, so all components may be

customized on a per-type or per-instance basis without chang-

ing the underlying code

• Straightforward test writer interface for confi guring a test-

bench and specifying constrained layered sequential stimulus

• Common message reporting and formatting interface

Feature Overview
TLM Communication

OVM components communicate via standard TLM interfaces,

which improve reusability. TLM defi nes a standard set of inter-

face methods to defi ne communication semantics but sepa-

rates the interfaces from their implementations. Using TLM,

a component may communicate via its interface to any other

component that implements that interface. Thus, one com-

ponent may be connected at the transaction level to another

implemented at multiple levels of abstraction. The common

semantics of TLM communication permits components to be

swapped in and out without affecting the rest of the environ-

ment. The OVM has built-in checking to ensure that communi-

cation paths are defi ned and connected correctly.

Phasing and Execution Management

To be able to have VIP from multiple sources work together in

a single environment, the OVM defi nes a series of phases that

all verifi cation components go through during the execution

of a simulation (see Figure 4). Once the top-level environment

is constructed in the new() phase, child components are then

instantiated, constructed, and confi gured hierarchically during

post_new(). The connections between components are defi ned

during the elaboration() phase, and these connections are

checked and resolved in the post_elaboration() phase. At the

end of post_elaboration(), all components in the environment

are allocated, connected, and ready for use.

Next, the pre_run() phase allows the test to further customize

and confi gure verifi cation components and/or the design under

Figure 3: The OVM Class Library

www.ovmworld.org

test (DUT) prior to executing the test in the run() phase. At the

conclusion of run(), which is a task, three reporting phases are

executed: extract() allows results to be gathered from specifi c

components, check() validates the results to determine the

pass/fail status of the test, and report() lets each component

report its results and status to a log fi le or the display, using

the message severity and formatting routines.

It is possible to defi ne user-, project-, or company-specifi c

phases and insert these into the default list. This ensures they

are run on every component at the appropriate time during the

simulation. The execution of phases is managed automatically

throughout the environment at every level of the hierarchy.

Testbench/Environment Customization

The OVM does not require instantiation of individual compo-

nents, as in the following example.

red my_a;
my_a = new(“a”,this); // hard-coded instantiation/al-
location

Instead, the OVM facilitates reuse and customization through a

class factory, which is a standard object-oriented technique al-

lowing components to be instantiated and initialized on-the-fl y

from a central location as follows.

ovm_component cmp;
cmp = create_component(“red”, “a”); // fl exible instan-
tiation
$cast(my_a,cmp);

All components in the OVM are extended from ovm_component,

which is the return type of the create_component() method of

the class factory. Thus, the return value must be cast to the

specifi c component (my_a) that, by default, is now of type a_c,

as it was in the original code. The class factory also allocates

and initializes the component before returning it. The advan-

tage of using the class factory is that it may be overridden to

customize the environment.

ovm_factory::set_type_override(“red”, “blue”);
ovm_factory::set_inst_override(“top.a”, “red”, “green”);

The set_type_override() method tells the class factory to return

a component of type blue whenever a red is requested. The en-

vironment coded in this example now has a component of type

blue for my_a (and any other instance of the red class), allowing

a different set of behaviors without changing the environment

code, simply because the environment was written to allow

this fl exibility. The use of TLM interfaces between components

facilitates this capability by enforcing the encapsulation of

communication. As long as blue has the same interfaces as red,

the rest of the environment is perfectly compatible. Similarly,

the type returned by the class factory may also be overridden

on a per-instance bases using set_inst_override().

Confi guration

One of the keys to reuse is being able to customize and con-

fi gure components based on their context. The OVM manages

this process by allowing components to specify confi guration

information for their children. During the execution of the

post_new() phase, each component is responsible for checking

whether its internal properties have been so confi gured, and,

if they have, it sets those properties to the confi gured values.

The build process continues top-down, allowing each compo-

nent to modify the confi guration and/or instantiation of its

child components.

class my_env extends ovm_env;
 block b;
 ...
 function void build(); // called from post_new()
 set_confi g_int(“b”, “is_active”, 0);
 ...
 b.build();
 endfunction
endclass

class block extends ovm_component;
 driver d;
 bit is_active = 1;

Figure 4: Simulation Phases of the OVM

Copyright (C) 2007 Mentor Graphics Corporation and Cadence Design Systems, Inc.
All company or product names are the registered trademarks or trademarks of their respective owners.

2655 Seely Avenue
San Jose, CA 95134
Phone: 408.943.1234
Fax: 408.428.5001
www.cadence.com

8005 SW Boeckman Road
Wilsonville, OR 97070-7777

Phone: 503.685.7000
Fax: 503.685.1204

Sales and Product Information
Phone: 800.547.3000

www.mentor.com

www.ovmworld.org

 function void build();
 if(get_confi g_int(“is_active”, is_active)
 if(is_active) begin
 cmp = create_component(“driver”, “d”);
 $cast(d,cmp);
 d.build();
 end
 endfunction
endclass

In this example, the environment directs the confi guration for

the block to set its is_active bit to 0. All OVM components are

responsible for getting their own confi guration information,

so in its build process, the block component checks to get the

value of is_active from the global table. If a value is found, it is

used; otherwise, the default value is used. Confi guration values

may be set for int, string, and ovm_object parameters, so this

simple text-based interface (including wildcarding of names)

can be used to set the confi guration value for any information

required, depending on the component being used.

In this case, the block is set to be inactive (is_active == 0).

The block component continues its build process by using this

confi guration information to control the confi guration and set

up of its children. In this case, it uses the value of is_active to

control whether to instantiate a driver component. This single

block component may now be reused and controlled in many

different environments, each of which may choose to activate

the driver or not. By designing components to provide such

fl exibility, it becomes straightforward to create (or purchase) a

library of verifi cation components that may be reused without

altering its internal contents.

Sequential Layered Stimulus

A third way that the OVM facilitates the customization of par-

ticular tests is through the specifi cation of the actual stimuli

that will be executed. The OVM enables the rapid creation of

interesting transaction stimulus patterns without requiring de-

tailed knowledge of the verifi cation environment infrastructure.

This important feature provides allows non-verifi cation experts

to quickly create interesting test scenarios that can be reused

across multiple tests, verifi cation environment topologies, and

projects. Sequential stimulus can range from a purely directed

approach to a constrained-random approach that allows con-

straint layering via class factories, such as that described above.

Once defi ned, stimulus sequences can be reused as a subset

of other stimulus sequences in order to create larger and more

interesting test scenarios. Various scenarios can be executed in

order to exercise the design with interesting mixes of the stimu-

lus sequences. Complex protocols can be modeled by layering

sequences in a hierarchical fashion that provides clean abstrac-

tion for each level of the hierarchy. For large verifi cation environ-

ments, multiple interfaces can be controlled and coordinated

from a central mechanism; known as a virtual sequence.

Summary
Successful verifi cation projects require more than a standard

language. A sophisticated methodology is needed to build

leading-edge testbenches, ensure interoperability, and promote

verifi cation reuse. With several widely used but incompatible

verifi cation methodologies available, the industry has been

clear in its desire for cooperation among EDA vendors to end

the “methodology wars.”

The co-development and endorsement by Mentor and Cadence

give the OVM credibility and viability as the answer to the

industry’s concerns. The OVM is clearly the only interoperable,

open, and proven verifi cation methodology. With the release

of the OVM, there is no longer a methodology war raging. The

OVM is already the clear winner.

