
Open Verification Methodology Cookbook

Mark Glasser

Open Verification Methodology
Cookbook

Mark Glasser
Mentor Graphics Corporation
8005 SW Boeckman Road
Wilsonville, OR 97070
USA
mark_glasser@mentor.com

ISBN 978-1-4419-0967-1 e-ISBN 978-1-4419-0968-8
DOI 10.1007/978-1-4419-0968-8
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009930147

© Mentor Graphics Corporation, 2009
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden. The use in this publication of trade names, trademarks, service marks,
and similar terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights. The author and publisher have
taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Go to http://www.mentor.com/cookbook for more information about the Open Verification
Methodology and to obtain the OVM Cookbook kit of examples.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Janice

To all verification engineers, the unsung heros of the design
world, who toil over their testbenches so systems will work,

and who receive satisfaction from a job well done.

Preface
When I need to learn a new piece of software I invent a little problem for
myself that is within the domain of the application and then set out to solve it
using the new tool. When the software package is a word processor, I’ll use it
to write a paper or article I’m working on; when the software is a drawing
tool, I’ll use it to draw some block diagrams of my latest creation. In the
course of solving the problem, I learn how to use the tool and gain a practical
perspective on which features of the tool are useful and which are not.

When the new software is a programming environment or a new
programming language, the problem is a little different. I can’t just apply the
new language or environment to an existing problem. Unless I’m already
familiar with the language, I don’t want to commit to using it in a new
development project. On the other hand, I may have an inkling that it would
be best to use the new language. Otherwise, why would I be interested in it in
the first place? I need a small program to help me understand the
fundamental features and get a feel for how the language works. The
program must be small and succinct, something I can write quickly and
debug easily. Yet, it must use interesting language features I wish to learn.

Brian Kernighan and Dennis Ritchie solved this problem for all of us when
they wrote the famous “Hello World” program. In their classic book The C
Programming Language, they started off with a program that is arguably the
most trivial program you could write in C that still does something. The
beauty of Hello World is in its combination of simplicity and completeness.
The program quoted here in its entirety, is not only simple, it also contains all
of the constructs of a complete C program.

#include <stdio.h>

main()
{

printf(“hello, world\n”);
}

All those years ago, I typed the program into my text editor, ran cc and ld,
and a few seconds later saw my green CRT screen flicker with:

hello, world

viii
Getting that simple program working gave me confidence that C was
something I could conquer. I haven’t counted how much C/C++ code I’ve
written since, but it’s probably many hundreds of thousands of lines. I’ve
written all manner of software, from mundane database programs to exotic
multi-threaded programs. It all started with Hello World.

The Open Verification Methodology (OVM) is a programming environment
built upon SystemVerilog. It is designed to enable the development of
complex testbenches. Like C (or SystemVerilog or SystemC), it will take some
time and effort to study the OVM and understand how to apply all the
concepts effectively. The goal of this book is to give you the confidence that
running Hello World gave me all those years ago. If I, the author of this book,
have done my job reasonably well, then somewhere along the way, as you
read this book and exercise the examples, you should experience an aha! The
metaphorical light bulb in your brain will turn on, and you will grasp the
overall structure of the OVM and see how to apply it.

The premise of this book is that most engineers, like me, want to jump right
into a new technology. They want to put their hands on it, try it out and see
how it feels, learn the boundaries of what kinds of problems it addresses, and
develop some practical experience. This is why quickstart guides and online
help systems are popular. Generally, we do not want to read a lengthy manual
and study the theory of operation first. We would rather plunge in, and later,
refer to the manual only when and if we get stuck. In the meantime, as we
experiment, we develop a general understanding of what the technology is
and how to perform basic operations. Later, when we do crack open the
manual, the details become much more meaningful.

This book takes a practical approach to learning about testbench construction.
It provides a series of examples, each of which solves a particular verification
problem. The examples are thoroughly documented and complete and
delivered with build and run scripts that allow you to execute them in a
simulator and observe their behavior. The examples are small and focused so
you don’t have to wade through a lot of ancillary material to get to the heart
of an example.

This book presents the examples in a linear progression—from the most basic
testbench, with just a pin-level stimulus generator, monitor, and DUT, to
fairly sophisticated uses that involve stacked protocols, coverage, and
automated testbench control. Each example in the progression introduces
new concepts and shows you how to implement those concepts in a
straightforward manner. Start by examining the first example. When you feel
comfortable with it, move on to the second one. Continue in this manner,
mastering each example and moving to the next.

ix
The examples in the cookbook are there for you to explore. After you run an
example, study the code to really understand its construction. The
documentation provided with each example serves as a guidepost to point
you to the salient features. Use this as a starting point to study the code
organization, style, and other implementation details not explicitly discussed.

Play with the examples, too. Change the total time of simulation to see more
results, modify the stimulus, add or remove components, insert print
statements, and so on. Each new thing you try will help you more fully
understand the examples and how they operate.

Feel free to use any of the code examples as templates for your work. For
pieces that you find useful, cut and paste them into your code, or use them as
a way to start developing your own verification infrastructures. Mainly,
enjoy!

Mark Glasser, January 2009

Organization of This Book
Chapter 1. Describes some general principles of verification and establishes a
framework for designing testbenches based on two questions—Does it work?
and Are we done?

Chapter 2. This chapter provides an introduction to object-oriented
programming and how OO techniques are applied to functional verification.

Chapter 3. Here, I introduce transaction-level modeling (TLM). The
foundation of OVM is based on TLM. I illustrate basic put, get, and transport
interfaces with examples.

Chapter 4. This chapter explains the mechanics of OVM, illustrating how to
build hierarchies of class-based verification components and connect them
with transaction-level interfaces. It also explains the essentials of using the
OVM reporting facility.

Chapter 5. This chapter introduces the essential components of testbenches,
such as drivers and monitors, and illustrates their construction with
examples.

Chapter 6. This chapter discusses the essential topic of reuse—how to build
components so that you have to do so only once and can apply what you have
built in multiple situations.

x

Chapter 7. This chapter presents complete testbenches that use the types of
components discussed so far and new ones, such as coverage collectors and
scoreboards.

Chapter 8. OVM provides a facility called sequences for building complex
stimulus generators. Sequences are discussed in this chapter, including how
to construct sequences and how to use them to form a test API.

Chapter 9. It is important to reuse block-level testbenches when testing
subassemblies or complete systems. This chapter illustrates some techniques
for taking advantage of existing testbench components when constructing a
system from separate blocks.

Chapter 10. SystemVerilog and OVM motivate new coding conventions. This
chapter discusses some ways of constructing code to ensure that it is efficient,
readable, and of course, reusable.

Obtaining the OVM Kit

You can get the open source OVM kit from www.ovmworld.com. The OVM
kit contains complete source code and documentation.

Obtaining the Example Kit

The code used to illustrate concepts in this text is derived from the OVM
cookbook kit available from Mentor Graphics. You can download the kit from
www.mentor.com. Many of the snippets throughout the text have line numbers
associated with them and, in some cases, a file name. The file names and line
numbers are from the files in the Mentor OVM example kit.

Using the OVM Libraries

The OVM SystemVerilog libraries are encapsulated in a package called
ovm_pkg. To use the package, you must import it into any file that uses any of
the OVM facilities. The OVM library also contains a collection of macros that
are useful in some places. You will need to include those as well as import the
package

import ovm_pkig::*;
‘include “ovm_macros.svh”

To make the OVM libraries available to your SystemVerilog testbench code,
you must compile it into the work library. This requires two command line
options when you compile your testbench with Verilog:

OVM Cookbook Examples Kit
Updated Download Locations
The OVM Cookbook Examples Kit is available for download on the following two websites:

1) www.verificationacademy.com
2) www.ovmworld.org

xi
+incdir+<location-of-OVM-libraries>/src
<location-of-OVM-libraries>/src/ovm_pkg.sv

The first option directs the compiler to search the OVM source directory for
include files. The second option identifies the OVM package to be compiled.

Building and Running the Examples

Installing the cookbook kit is a matter of unpacking the kit in a convenient
location. No additional installation scripts or processes are required. You will
have to set the OVM_HOME environment variable to point to your installation of
OVM:

% setenv OVM_HOME <ovm-location>

Each example directory contains a run_questa script and one or more
compile_* scripts. The run_questa script runs the example in its entirety.
The compile script is a file that is supplied as an argument to the -f option on
the compiler command line. Each example is also supplied with a vsim.do
file that contains the simulator commands needed to run each example.

The simplest way to run an example is to execute its run_questa script:

% ./run_questa

This script compiles, links, and runs the example. You can also run the steps
manually with the following series of commands:

% vlib work
% vlog -f compile_sv.f
% vsim -c top -do vsim.do

You must have the proper simulator license available to run the examples.

Who Should Read This Book?

This book is intended for electronic design engineers and verification
engineers who are looking for ways to improve their efficiency and
productivity in building testbenches and completing the verification portion
of their projects. A familiarity with hardware description languages (HDL) in
general, and specifically SystemVerilog, is assumed. It is also assumed that
you know how to write programs in SystemVerilog, but it is not necessary to
be an expert. Familiarity with object-oriented programming or OO
terminology is helpful to fully understand the OVM. If you are not yet

xii
familiar with OO terminology, not to worry, the book introduces you to the
fundamental concepts and terms.

Acknowledgements

The author wishes to acknowledge the people who contributed their time,
expertise, wisdom, and in some cases, material to this project. This book
would never have come to completion without their dedication to this project.

Without Adam Rose’s simple, yet brilliant observation that construction of
hierarchies of class-based components in SystemVerilog can be done in the
same manner as SystemC, OVM and its predecessor AVM would not exist.
Adam was also a key participant in the development of the TLM-1.0 standard
which has greatly influenced the nature of OVM. Tom Fitzpatrick, who has
been involved in the project since the earliest days of AVM, provided some
material and helped refine the text. Rich Edelman, with humor, good grace,
and a keen eye for detail, and Andy Meyer, with his amazingly deep reservoir
of verification knowledge, allowed me to bounce ideas around with them and
helped me crystallize the concepts and flow of the material. Adam Erickson,
who is a true code wizard and an expert in object-oriented patterns, always
keeps me honest.

Todd Burkholder taught me about narrative flow and loaned me some if his
English language skills to smooth out awkward sentences. Jeanne Foster did
the detailed copy editing and an insightful job of producing an index.

Thanks to Harry Foster, who inspired the HFPB protocol and encouraged me
to write this book. Hans VanderSchoot did a detailed review of the text and
suggested many good ideas for improving the text. Also thanks to Kurt
Schwartz of WHDL who reviewed an early draft. Cliff Cummings provided
excellent advice on construction of the RTL examples.

A special thanks to Jan Johnson, who sponsored and supported the OVM
Cookbook project from its inception.

Contents
Preface . vii

Contents . xiii

List of Figures . xvii

Introduction . 1

Chapter 1: Verification Principles . 3
1.1 Verification Basics . 3
1.2 First Testbench . 9
1.3 Second Testbench . 13
1.4 Layered Organization of Testbenches . 19
1.5 Two Domains . 23
1.6 Summary . 25

Chapter 2: Fundamentals of Object-Oriented Programming 27
2.1 Procedural vs. OOP . 27
2.2 Classes and Objects . 29
2.3 Object Relationships . 33
2.4 Virtual Functions and Polymorphism . 36
2.5 Generic Programming . 40
2.6 Classes and Modules . 45
2.7 OOP and Verification . 48

Chapter 3: Transaction-Level Modeling . 49
3.1 Abstraction . 49
3.2 Definition of a Transaction . 51
3.3 Interfaces . 52
3.4 TLM Idioms . 54
3.5 Isolating Components with Channels . 64
3.6 Forming a Transaction-Level Connection . 67
3.7 Summary . 68

Chapter 4: OVM Mechanics . 69
4.1 Components and Hierarchy . 69
4.2 Connectivity . 73
4.3 Phases . 79
4.4 Config . 83
4.5 Factory . 89
4.6 Shutting Down the Testbench . 100
4.7 Connecting Testbenches to Hardware . 104
4.8 Tests and Testbenches . 110
4.9 Reporting . 111
4.10 Summary . 119

Chapter 5: Testbench Fundamentals . 121
5.1 Drivers and Monitors . 121
5.2 Introducing the HFPB Protocol . 125

xiv
5.3 An RTL Memory Slave .129
5.4 Monitors and Analysis Ports .132
5.5 Summary .134

Chapter 6: Reuse .135
6.1 Types of Reuse (or Reuse of Types) .135
6.2 Reusable Components .136
6.3 Agents .141
6.4 Reusable HFPB Protocol .143
6.5 Agent Example .148
6.6 Summary .150

Chapter 7: Complete Testbenches .151
7.1 Floating Point Unit .151
7.2 Coverage Collectors .154
7.3 FPU Agent .156
7.4 Scoreboards .159
7.5 Different Tests .161
7.6 Summary .164

Chapter 8: Sequences .165
8.1 Sequence Basics .165
8.2 A Sequence Example .166
8.3 Anatomy of a Sequence .171
8.4 Another Sequence API .173
8.5 Response Routing .175
8.6 Sequences in Parallel .179
8.7 Constructing APIs with Sequences .181
8.8 Summary .184

Chapter 9: Block-to-System .185
9.1 Reusing Block-Level Components .185
9.2 Reusing Block-Level Testbenches .187
9.3 Testing at the System Level .193
9.4 Summary .195

Chapter 10: Coding Conventions .197
10.1 Naming Scheme .197
10.2 Global or Local? .201
10.3 Objects .204
10.4 Packages .208
10.5 Comments .210
10.6 Summary .210

Afterword .213

Appendix A: Graphic Notation .215
A.1 Components .215
A.2 Interfaces .216
A.3 Interconnect .217
A.4 Channels .218
A.5 Analysis Ports .219
A.6 Summary .220

Bibliography .221

xv
Index . 223

xvi

List of Figures
Figure 1-1 Comparing Design and Intent . 4

Figure 1-2 Two-Loop Flow . 9

Figure 1-3 A Two-Input AND Gate . 10

Figure 1-4 First Testbench . 11

Figure 1-5 3-Bit Counter . 16

Figure 1-6 Testbench Organization for 3-Bit Counter 17

Figure 1-7 OVM Testbench Architecture Layers . 20

Figure 1-8 Concentric Testbench Organization . 21

Figure 1-9 A Master and a Slave . 22

Figure 1-10 Connection between Operational and Analysis Domains 24

Figure 2-1 HAS-A Relationship . 33

Figure 2-2 UML for a HAS-A Relationship . 34

Figure 2-3 IS-A Example: Mammal Taxonomy . 35

Figure 2-4 UML for IS-A Relationship . 35

Figure 2-5 Example of IS-A Relationship . 36

Figure 2-6 Three Classes Related with IS-A . 38

Figure 3-1 Interface Inheritance (with Multiple Inheritance) 53

Figure 3-2 Put . 54

Figure 3-3 Get Configuration . 57

Figure 3-4 Bidirectional Transport Configuration . 59

xviii
Figure 3-5 Two Components Isolated with a FIFO .64

Figure 4-1 A Simple Hierarchy of Components .69

Figure 4-2 Connecting an Initiator to a Target .74

Figure 4-3 Connecting Ports and Exports through the Hierarchy 75

Figure 4-4 Control Flow through Ports and Exports .78

Figure 4-5 Each Component Has a Database of Configuration Items83

Figure 4-6 Hierarchy of Configuration Databases .86

Figure 4-7 Factory Override Map Data Structure .91

Figure 4-8 Family of Classes for the Toy Factory .95

Figure 4-9 Two Producers and a Consumer .101

Figure 4-10 Interface Connecting Testbench to Hardware 104

Figure 4-11 Layering Tests and Testbenches .111

Figure 4-12 Hierarchical Design with Report Handlers 115

Figure 4-13 Affect of a Call to set_report_id_action_hier 116

Figure 5-1 Transaction-Level Memory Master and Slave 122

Figure 5-2 Request and Response Flow between Master and Slave 122

Figure 5-3 HFPB Pin Connections .126

Figure 5-4 HFPB State Machine .126

Figure 5-5 HFPB Write Transaction .127

Figure 5-6 HFPB Read Transaction .128

Figure 5-7 Memory Master with Driver, Monitor, and Pin-Level Slave . . .129

Figure 5-8 Analysis Port Organization .132

xix
Figure 6-1 Master and Slave Connected through a Transport Channel . . . 136

Figure 6-2 Simple Agent with a Driver and a Monitor 141

Figure 6-3 Simple Agent with Driver Disabled . 142

Figure 6-4 Simple Agent with the Monitor Turned Off 142

Figure 6-5 HFPB Agent . 143

Figure 6-6 An Example Using an Agent . 148

Figure 6-7 Complete Topology of Agent Example . 149

Figure 7-1 Simple FPU Testbench with Coverage . 151

Figure 7-2 Pinout for FPU . 157

Figure 7-3 FPU Agent . 158

Figure 7-4 Complete FPU Testbench . 160

Figure 8-1 Relationship between Sequences, Sequencer, and Driver 166

Figure 8-2 Simple Sequence Configuration . 167

Figure 8-3 Processes Involved in Sequence Communication 170

Figure 8-4 UML for Sequences and Sequencers . 171

Figure 8-5 FPU Testbench with a Randomized Sequence 173

Figure 8-6 Sequences with Response Queues . 176

Figure 8-7 Flow of Control between Sequence and Driver 177

Figure 8-8 Flow of Control with a Response Handler 179

Figure 8-9 Using Sequences to Construct a Test API for HFPB 182

Figure 9-1 Complete System Testbench . 186

Figure 9-2 HFPB Memory Testbench . 188

xx
Figure 9-3 FPU Testbench .188

Figure 9-4 System Block Diagram .189

Figure 9-5 Connecting Testbenches .191

Figure 9-6 System-Level Chain of Sequences .195

Figure A-1 Component Symbol .216

Figure A-2 A Component with a Thread .216

Figure A-3 A Component with a Pin Interface .216

Figure A-4 Transaction-Level Interfaces .217

Figure A-5 Pin-Level Data Flow .217

Figure A-6 Transaction Data Flow .218

Figure A-7 Two Components Communicating through a FIFO219

Figure A-8 Analysis Port Connected to an Analysis Interface 220

Introduction
Software construction is not usually a topic that immediately comes to mind
when hardware designers and verification engineers talk about their work.
Designers and verification engineers, particularly those schooled in electrical
engineering, naturally think of design and verification work as a “hardware
problem,” meaning that principles of hardware design are required to build
and verify systems. Of course, they are largely, but not entirely, correct.
Electronic design requires an in-depth knowledge of hardware, everything
from basic DC and AC circuit analysis and transistor operation to
communication protocols and computer architecture. A smattering of physics
is useful too for designs implemented in silicon (which is the intent for most).
However, building a testbench to verify a hardware design is a different kind
of problem—it is a software problem.

Today, with the availability of reliable synthesizers and the application of
synchronous design techniques, the lowest level of detail that designers must
consider is register transfer level (RTL). As the name suggests, the primary
elements of a design represented at this level are registers, interconnections
between registers, and the computation necessary to modify their values.
Since each register receives new values only when the clock pulses, all of the
combinational logic needed to compute the register value can be abstracted to
a set of Boolean and algebraic expressions.

RTL straddles the hardware and software worlds. The components of an RTL
design are readily identifiable as hardware; such as registers, wires, and
clocks. Yet the combinational expressions and control logic look suspiciously
like those in typical procedural programming languages, such as C or Java.
The process of building an RTL design is much like programming. You write
code that represents the structures in your design using an HDL, a special
programming language designed specifically for this purpose. You use
compilers, linkers, and debuggers, just as you would if you were
programming in C. There are differences, of course. You do not need to
consider issues surrounding timing, concurrency, and synchronization when
programming in C (unless you are writing embedded software, which further
blurs the line between hardware and software).

Testbenches live squarely in the software world. The elements of a testbench
are exactly the same as those found in any software system—data structures
and algorithms. Testbenches are hardware aware since their job is to control,

2

respond to, and analyze hardware. Still, the bulk of their construction and
operation falls under the software umbrella.

Most of what a testbench “does,” does not involve hardware. Testbenches
operate at levels of abstraction higher than RTL, thus they do not require
registers, wires, and other hardware elements. We can categorize the
testbench results we collect and analyze as data processing, which does not
involve hardware elements at all. Testbench programs do not need to be
implemented in silicon, which completely frees them from the limitations of
synthesizable constructs. The only place that a testbench is involved with
hardware is at its interfaces. Testbenches must stimulate and respond to
hardware. Testbenches must know about hardware, but they do not need to be
hardware.

Because testbenches are software, it is appropriate to apply software
construction techniques to building them. Software construction is at the
center of modern verification technology and the OVM. Software
construction is itself a very large topic on which many volumes have been
written. It is not possible for us to go into great depth on topics such as object-
oriented programming, library organization, code refactoring, testing
strategies, and so on. However, this book touches on these topics in a practical
way, showing how to apply software techniques to building testbenches. I
rely heavily on examples to illustrate the principles discussed.

1

Verification Principles
This chapter surveys general principles of verification and establishes a
framework for designing testbenches based on two questions—Does it work?
and Are we done?

1.1 Verification Basics

Functionally verifying a design means comparing the designer’s intent with
observed behavior to determine their equivalence. We consider a design
verified when, to everyone’s satisfaction, it performs according to the
designer’s intent. This basic principle often gets lost in the discussion of
testbenches, assertions, debuggers, simulators, and all the other
paraphernalia used in modern verification flows. To tell if a design works,
you must compare it with some known reference that represents the
designer’s intent. Keep this in mind as you read the rest of this book. Every
testbench has some kind of reference model and a means to compare the
function of the design with the reference.

When we say “design,” we mean the design being verified, often called the
design under test or DUT. To be verified, the DUT is typically in some form
suitable for production—a representation that can be transformed into silicon
by a combination of automated and manual means. We distinguish a DUT
from a sketch on the back of a napkin or a final packaged die, neither of which
is in a form that can be verified. A reference design captures the designer’s
intent, that is, what the designer expects the design to do. The reference can
take many forms, such as a document describing the operation of the DUT, a
golden model that contains a unique algorithm, or assertions that represent a
protocol.

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_2,
© Mentor Graphics Corporation, 2009

4 Verification Basics
Figure 1-1 Comparing Design and Intent

To automate the comparison of the behavior with the intent, both must be in a
form that we can execute on a computer using some program that does the
comparison. Exactly how to do this is the focus of the rest of this book. The
problem of building a design is a topic beyond the scope of this text. Here, we
confine our discussion to the problem of capturing design intent and
comparing it with the design to show their equivalence.

1.1.1 Two Questions

Verifying a design involves answering two questions: Does it work? and Are
we done? These are basic, and some would say, obvious questions. Yet they
motivate all the mechanics of every verification flow. The first question is
Does it work? This question comes from the essential idea of verification we
discussed in the previous section. It asks, Does the design match the intent?
The second question is Are we done? It asks if we have satisfactorily
compared the design and intent to conclude whether the design does indeed
match the intent, or if not, why not. We use these valuable questions to create
a framework for developing effective testbenches.

1.1.2 Does It Work?

Does it work? is not a single question but a category of questions that
represent the nature of the DUT. Each design will have its own set of does-it-
work questions whose role is to determine functional correctness of the design.
Functional correctness questions ask whether the device behaves properly in
specific situations. We derive these questions directly from the design intent,
and we use them to express design intent in a testbench.

Consider a simple packet router as an example. This device routes packets
from an input to one of four output ports. Packets contain the address of the

equal
?

Observed
Behavior

Designer’s
Intent

Verification Basics 5
destination port and have varying length payloads. Each packet has a header,
trailer, and two bytes for the cyclic redundancy check (CRC). The does-it-
work questions might include these:

Does a packet entering the input port addressed to output port 3
arrive properly at port 3?
Does a packet of length 16 arrive intact?
Are the CRC bytes correct when the payload is [0f 73 a8 c2 3e
57 11 0a 88 ff 00 00 33 2b 4c 89]?

This is just a sample of a complete set of questions. For a device even as
relatively simple as this hypothetical packet router, the set of does-it-work
questions can be long. To build a verification plan and a testbench that
supports the plan, you must first enumerate all the questions or show how to
generate all of them, and then select the ones that are interesting.

Continuing with the packet router example, to enumerate all the does-it-work
questions, you can create a chart like this:

The table above contains two kinds of questions, those we can answer directly
and those we can break down into more detailed questions. Question 1 is a
series of questions we can explicitly enumerate:

Number Does-It-Work Questions

1. For all four output ports, does a packet arriving at the input
port addressed to an output port arrive at the proper output
port?

2. Do packets of varying payload sizes, from eight bytes to 256
bytes, arrive intact?

3. Is the CRC computation correct for every packet?

4. Is a packet with an incorrect header flagged as an error?

Number Does-It-Work Questions

1a Does a packet arriving at the input port addressed to output
port 0 arrive at port 0?

1b Does a packet arriving at the input port addressed to output
port 1 arrive at port 1?

6 Verification Basics
Notice that we formulate all of the questions so that they can be answered yes
or no. At the end of the day, a design either works or it doesn’t—it either is
ready for synthesis and place and route or it is not. If you can answer all the
questions affirmatively, then you know the design is ready for the next
production step.

When you design your set of does-it-work questions, remember to word them
so they can be answered yes or no. A yes answer is positive; that is, answering
yes means the device operates correctly. That will make things easier than
trying to keep track of which questions should be answered yes and which
should be answered no. A question such as Did the router pass any bad
packets? requires a no answer to be considered successful. A better wording
of the question is, Did the router reject bad packets? But you should make the
questions as specific as you can, so an even better wording is, When a bad
packet entered the input port, did the router detect it, raise the error signal,
and drop the packet? Keep in mind that more specific questions tell you more
about the machinery. Your testbench needs to determine the yes or no answer.

A properly worded yes or no question contains its own success criteria. It
says what will achieve a yes response. A question such as, Is the average
latency less than 27 clock cycles? contains the metric, 27 clock cycles, and the
form of comparison, less than. If the question is (improperly) worded as,
What is the average latency of packets through the router? we will not know
what is considered acceptable. To answer either question, you first must be
able to determine the average latency. Only in the correct wording of the
question do we know how to make a comparison to determine whether the
result is correct. The metric by itself does not tell us whether the design is
functioning as intended. When we compare the measured value against the
specification, 27 clock cycles in this example, we can determine whether the
design works.

As is often the case, it is not practical to enumerate every single does-it-work
question. To verify that every word in a 1 Mb memory can be written to and
read from, it is neither practical nor necessary to write one million questions.
Instead, a generator question, a question that generates many others, takes the
place of one million individual questions. Can each of the one million words

1c Does a packet arriving at the input port addressed to output
port 2 arrive at port 2?

1d Does a packet arriving at the input port addressed to output
port 3 arrive at port 3?

Number Does-It-Work Questions

Verification Basics 7
in the memory be successfully written to and read from? is a generator
question.

Other questions may themselves represent classes of questions. Question 3, Is
the CRC computation correct for every packet? is an example. Testing the
CRC computation requires a number of carefully-thought-through tests to
determine whether the CRC computation is correct in all cases. For example,
we also want to test what happens when the payload is all zeros, is all ones,
has an odd number of bytes, has an even number of bytes, has odd bytes that
are all zero and even bytes that are all one, and so forth.

1.1.3 Are We Done?

To determine the answer to Are we done?, we need to know if we have
answered enough of the does-it-work questions to claim that we have
sufficiently verified the design. We begin this task by prioritizing all the does-
it-work questions across two axes:

The art of building a testbench requires that, in the initial stage, we identify
the set of questions and sort them to identify the ones that return the highest
value in terms of verifying the design. The next step is to build the machinery
that will answer the questions and determine which ones have been answered
(and which have not).

Are-we-done questions are also called functional coverage questions, questions
that relate to whether the design is sufficiently covered by the test suite in
terms of design function. As with does-it-work questions, we can also
decompose functional coverage questions into more detailed questions. And
just like functional correctness questions, functional coverage questions must
also be answerable in terms of yes or no. The following list includes examples
of functional coverage questions:

Has every processor instruction been executed at least once?
Has at least one packet traversed from every input port to every
output port?

Easy to answer Hard to answer

Most critical
functionality

No-brainer. Get to work!

Least critical
functionality

Probably can omit. Don’t waste the time.

8 Verification Basics
Has the memory been successfully accessed with a set of
addresses that exercise each address bit as one and then each
address bit as zero, not including 0xffffffff and 0x00000000?

Another way to think of these questions is that they ask, Have the necessary
does-it-work questions been answered affirmatively? When we think of
functional coverage in this light, the term refers to covering the set of does-it-
work questions. Furthermore, coverage questions identify a metric and a
threshold for comparison. Coverage is reached (that is, the coverage question
can be answered yes) when the metric reaches the threshold.

In summary, the art of building a testbench begins with a test plan. The test
plan begins with a carefully thought out set of does-it-work and are-we-done
questions.

1.1.4 Two-Loop Flow

The process for answering the does-it-work and are-we-done questions can
be described in a simple flow diagram as shown in Figure 1-2. Everything is
driven by the functional specification for the design. From the functional
specification, you can derive the design itself and the verification plan. The
verification plan drives the testbench construction.

The flow contains two loops, the does-it-work loop and the are-we-done loop.
Both loops start with a simulation operation. The simulation exercises the
design with the testbench and generates information we use to answer the
questions. First we ask, Does it work? If any answer is no, then we must
debug the design. This debugging exercise can result in changes to the design
implementation.

Once the design works to the extent it has been tested, then it is time to
answer the question Are we done? We answer this question by collecting
coverage information and comparing it against thresholds specified in the test
plan. If we do not reach those thresholds, then the answer is no, and we must
modify the testbench to increase the coverage. Then we simulate again.

Changing the testbench or the stimulus can cause other latent design bugs to
surface. A subsequent iteration around the loop may cause us to go back to
the does-it-work loop again to fix any new bugs that appear. As you can see, a
complete verification process flip-flops back and forth between does-it-work

First Testbench 9
and are-we-done loops until we can answer yes for all the questions in both
categories.

Figure 1-2 Two-Loop Flow

In an ideal world, a design has no bugs and the coverage is always sufficient,
so you only have to go around each loop once to get yes answers to both
questions. In the real world, it can take many iterations to achieve two yes
answers. One objective of a good verification flow is to minimize the number
of iterations to complete the verification project in the shortest amount of time
using the smallest number of resources.

1.2 First Testbench

Let’s jump right in by illustrating how to verify one of the most fundamental
devices in a digital electronic design, an AND gate. An AND gate computes
the logical and of the inputs. The function of this device is trivial, and in
practice, is hardly worth its own testbench. Because it is trivial, we can use it

Does it work?

Are we done?

Debug
Design

Does It Work
?

No

Yes

No

Yes

Testbench
Design

Implementation

Verification
Plan

Design
Specification

Done

Are We Done
?

Simulate

Modify
Stimulus

10 First Testbench
to illustrate some basic principles of verification without having to delve into
the details of a more complex design.

Figure 1-3 shows the schematic symbol for a two-input AND gate. The gate
has two inputs, A and B, and a single output Y. The device computes the
logical AND of A and B and puts the result on Y.

Figure 1-3 A Two-Input AND Gate

The following truth table describes the function of the device.

The truth table is exhaustive: it contains all possible inputs for A and B and
thus all possible correct values for output Y.

Our mission is to prove that our design, the AND gate, works correctly. To
verify that it does indeed perform the AND function correctly, we first need to
list the questions. The truth table helps us create the set of questions we need
to verify the design. Each row of the table contains an input for A and B and
the expected output for Y. Since the table is exhaustive, our generator
question is, For each row in the truth table, when we apply the values of A
and B identified in that row, does the device produce the expected output for
Y? To answer the are-we-done question, we determine whether we have
exercised each row in the truth table and received a yes answer to the does-it-
work question for that row. Our are-we-done question is Do all rows work?

To automate answering both the does-it-work and are-we-done questions, we
need some paraphernalia, including the following:

A model that represents the DUT (in this case, the AND gate)
The design intent in a form we can codify as a reference model

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

A

B
Y

First Testbench 11
Some stimuli to exercise the design
A way to compare the result to the design intent

Figure 1-4 First Testbench

While our little testbench is simple, it contains key elements found in most
testbenches at any level of complexity. The key elements are the following:

DUT
Stimulus generator—generates a sequence of stimuli for the DUT
Scoreboard—embodies the reference model

The scoreboard observes the inputs and outputs of the DUT, performs the
same function as the DUT except at a higher level of abstraction, and
determines whether the DUT and reference match. The scoreboard helps us
answer the does-it-work questions.

1.2.1 DUT

The DUT is our two-input AND gate. We implement the AND gate as a
module with two inputs, A and B, and one output Y.

43 module and2 (
44 output bit Y,
45 input A, B);
46
47 initial Y = A & B;
48
49 always @* Y = #1 A & B;
50 endmodule

The stimulus generator in this example generates directed stimulus. Each new
value emitted is computed in a specific order. Later, we will look at random
stimulus generators which, as their name suggests, generate random values.

stimulus

scoreboard

A

B
Y

12 First Testbench
80 module stimulus(output bit A, B);
81
82 bit [1:0] stimulus_count = 0;
83
84 always
85 #10 {A,B} = stimulus_count++;
86
87 endmodule

The purpose of the stimulus generator is to produce values as inputs to the
DUT. stimulus, a two-bit quantity, contains the value to be assigned to A and
B. After it is incremented in each successive iteration, the low-order bit is
assigned to A, and the high-order bit is assigned to B.

1.2.2 Scoreboard

The scoreboard is responsible for answering the does-it-work question. It
watches the activity on the DUT and reports whether it operated correctly.1
One important thing to notice is that the structure of the scoreboard is
strikingly similar to the structure of the DUT. This makes sense when you
consider that the purpose of the scoreboard is to track the activity of the DUT
and determine whether the DUT is working as expected.

58 module scoreboard(input bit Y, A, B);
59
60 reg Y_sb, truth_table[2][2];
61
62 initial begin
63 truth_table[0][0] = 0;
64 truth_table[0][1] = 0;
65 truth_table[1][0] = 0;
66 truth_table[1][1] = 1;
67 end
68
69 always @(A or B) begin
70 Y_sb = truth_table[A][B];
71 #2 $display(“@%4t - %b%b : Y_sb=%b, Y=%b (%0s)”,
72 $time, A, B, Y_sb, Y,
73 ((Y_sb == Y) ? “Match” : “Mis-match”));
74 end
75 endmodule

1. For anything more sophisticated than an AND gate, the monitor and response
checker would be separate components in the testbench. For the trivial AND gate
testbench, this would be more trouble than it’s worth and would cloud the basic
principles being illustrated.

Second Testbench 13
The scoreboard pins are all inputs. The scoreboard does not cause activity on
the design. It passively watches the inputs and outputs of the DUT.

The top-level module, shown below, is completely structural; it contains
instantiations of the DUT, the scoreboard, and the stimulus generator, along
with the code necessary to connect them.

92 module top;
93
94 wire A, B, Y;
95
96 stimulus s(A, B);
97 and2 a(Y, A, B);
98 scoreboard sb(Y, A, B);
99
100 initial
101 #100 $finish(2);
102 endmodule

When we run the simulation for a few iterations, here is what we get:

@ 22 - 01 : Y_sb=0, Y=0 (Match)
@ 32 - 10 : Y_sb=0, Y=0 (Match)
@ 42 - 11 : Y_sb=1, Y=1 (Match)
@ 52 - 00 : Y_sb=0, Y=0 (Match)
@ 62 - 01 : Y_sb=0, Y=0 (Match)
@ 72 - 10 : Y_sb=0, Y=0 (Match)
@ 82 - 11 : Y_sb=1, Y=1 (Match)
@ 92 - 00 : Y_sb=0, Y=0 (Match)

Each message has two parts. The first part shows the stimulus being applied.
The second part shows the result of the scoreboard check that compares the
DUT’s response to the predicted response. We use a colon to separate the two
parts.

This simple testbench illustrates the use of a stimulus generator and a
scoreboard that serves as a reference. Although the DUT is a simple AND
gate, all the elements of a complete testbench are present.

1.3 Second Testbench

The previous example illustrated elementary verification concepts using a
combinational design, an AND gate. Combinational designs, by their very
nature, do not maintain any state data. In our second example, we look at a
slightly more complex design that maintains state data and uses a clock to
cause transitions between states.

14 Second Testbench
The verification problem associated with synchronous (sequential) designs is
a little different than for combinational designs. Everything you need to know
about a combinational design is available at its pins. A reference model for a
combinational device simply needs to compute f(x) where x represents the
inputs to the device and f is the function it implements. The outputs of a
sequential device are a function of its inputs and its internal state. Further
computation may change the internal state. The scoreboard must track the
internal state of the DUT and compare the output pins.

A combinational device can be exhaustively verified by exercising all possible
inputs. For a device with n input pins, we must apply a total of 2n input
vectors. The number 2n can be large, but computing that many inputs is easy.
We just need to have an n-bit counter and apply each value of the counter to
the inputs of the device.

For a sequential device, the notion of “done” must extend to covering not
only the total number of possible inputs, but also the number of possible
internal states. For a device with n inputs and m internal states, you must
cover (2n inputs) * (2m states), which is 2n+m combinations of internal states
and inputs. For a device with 64 input pins and a single 32-bit internal
register, the number of state-input combinations is 296—a very large number
indeed!

Even for very large numbers of combinations, the verification problem would
not be too difficult if it were possible to simply increment a counter to reach
all combinations, as we do with combinational devices. Unfortunately, that is
not possible. The internal state is not directly accessible from outside the
device. It can only be modified by manipulating the inputs. The problem now
becomes how to reach all the states in the device through only manipulating
the inputs. This is a difficult problem that requires a deep understanding of
the device to generate sequences of inputs to reach all the states.

Since it is difficult to reach all the states, the obvious question becomes, Can
we prune the problem by reducing the number of states that we need to reach
to show that the device works correctly? The answer is yes. Now the question
becomes, How do we decide which states do not need to be covered?

This topic is complex, and a full treatment of it is beyond the scope of this
text. However, we can give an intuitive answer to the question. States that can
be shown to be unreachable, through formal verification or other techniques,
do not need to be covered. The designer should consider simplifying the
design to remove unreachable states, since they provide no value. States that
have a low probability of being reached may also be eliminated from the

Second Testbench 15
verification plan. Determining the probability threshold and assigning
probabilities to states is as much an art as a science. It involves understanding
how the design is used and which inputs are expected (as compared to which
are possible).

It is also possible to eliminate coverage of states that are functionally
equivalent. Consider a packet communications device. In theory, every
possible packet payload value represents a distinct state (or set of states) as it
passes through the design, and it should be covered during verification.
However, it is probably not a stretch to consider that arbitrary non-zero
values are, for all intents and purposes, equivalent. Of course, there might be
some interesting corner cases that must be checked, such as all zeros, all ones,
particular values that might challenge the error correction algorithms, and so
forth. Variations in data become interesting when they affect control flow.

In general, it is more important to cover control states than data states. A
common way to reduce the number of states necessary to cover a design is to
separate data and control. For a particular control path, the data can be
arbitrary. For certain data, you may want to fix the control path. For example,
in an ALU, a design that we will consider in detail in later chapters, you can
separate the control functions of getting data into and out of the registers and
establishing the arithmetic operation to be performed from the results of
specific arithmetic operations. Using directed control, you can randomize
data or look at data corner cases such as divide by 0 or multiply by 1.

For complex sequential designs, determining which states to cover (and
which do not need to be covered) and how to reach those states with minimal
effort is a problem that keeps verification engineers employed. In this section,
we will consider a small sequential device whose internal states can easily be
covered.

1.3.1 3-Bit Counter

The design shown in Figure 1-5 is a 3-bit counter with an asynchronous reset.
Each time the clock pulses high, the count increments. The design is
composed of three toggle flip-flops, each of which maintains a single bit of the
counter. The flip-flops are connected with some combinational logic to form a
counter. Each flip-flop toggles when the T input is high. When T is low, the
flip-flop maintains its current state. When the active low reset is set to 0, the
flip-flop moves to a 0 state.

16 Second Testbench
Figure 1-5 3-Bit Counter

The code for the counter is contained in two modules. One is a simple toggle
flip-flop, and the other connects the flip-flops with the necessary glue logic to
form a counter. The first example shown below is the toggle flip-flop.

36 module toggle_ff (output bit q, input t, rst_n, clk);
37
38 always @ (posedge clk or negedge rst_n)
39 if (!rst_n) q <= ‘0;
40 else if (t) q <= ~q;
41
42 endmodule

The counter comprises three toggle flip-flops and an AND gate.

47 module counter (output [2:0] q, input rst_n, clk);
48
49 wire t2;
50
51 toggle_ff ff0 (q[0], 1’b1, rst_n, clk);
52 toggle_ff ff1 (q[1], q[0], rst_n, clk);
53 toggle_ff ff2 (q[2], t2, rst_n, clk);
54 and a1 (t2, q[0], q[1]);
55
56 endmodule

The design is straightforward, but it has characteristics that are common in
real designs and that require some attention for proper design verification.
The key characteristics are that the design is driven by a clock, and that it
maintains internal state. The AND gate from the previous example does not
maintain any state. All of the information about what the design is doing can
be gleaned from its pins. In a design with internal data, that is not the case.

Q

T

RESET Q

T

RESETQ

T

RESET

clk

reset

Q2 Q1 Q0

1

Second Testbench 17
This difference is reflected in the design of our scoreboard. Figure 1-6 shows
the organization for the testbench for the 3-bit counter.

Figure 1-6 Testbench Organization for 3-Bit Counter

In many respects, the testbench for the 3-bit counter is much like the one for
the AND gate. Both have a scoreboard whose role is to watch what the design
is doing and determine whether it is working correctly. Both have a device for
driving the DUT. However, we manage operation differently for these
designs. We use a stimulus generator for the AND gate, but we use a controller
for the 3-bit counter. The 3-bit counter is a free-running device. As long as it is
connected to a running clock, it will continue to count. So we do not need a
stimulus generator as we did with the AND gate. Instead, the controller
manages the operation of the DUT and testbench. The controller provides an
initial reset so that the count starts from a known value. It also stops the
simulation at the appropriate time.

95 module control(output bit rst_n, input clk);
96
97 initial begin
98 rst_n <= 0;
99 @(posedge clk);
100 @(negedge clk);
101 rst_n <= 1;
102 repeat (10) @(posedge clk);
103 $finish;
104 end
105
106 endmodule

DUT
counter

q0

q1

q2

clk

reset

scoreboard

q0

q1

q2

clk

control

clk

reset

clkgen

reset

18 Second Testbench
The scoreboard must track the internal state of the DUT. It does this using the
variable count. Like the DUT, when reset is activated, count is set to 0. Each
clock cycle count increments, and the new value is compared with the count
from the DUT.

73 module scoreboard (input [2:0] q, input rst_n, clk);
74
75 int count;
76
77 always @(posedge clk or negedge rst_n) begin
78 if(!rst_n) count <= 0;
79 else begin
80 if (count == q)
81 $display(“time =%4t q = %3b count = %0d match!”,
82 $time, q, count);
83 else
84 $display(“time =%4t q = %3b count = %0d <-- no
match”,
85 $time, q, count);
86 count <= (count + 1) % 8;
87 end
88 end
89
90 endmodule

The scoreboard has a high-level model of the counter. It uses an integer
variable and the plus (+) operator to form a counter instead of flip-flops and
AND gates. Each time the clock pulses, it increments its count, just like the
RTL counter. It also compares to see if its internal count matches the output of
the counter DUT.

For completeness, the example shows the clock generator and top-level
module. The clock generator simply initializes the clock to zero, and then it
toggles it every 5 ns.

61 module clkgen(output bit clk);
62
63 initial begin
64 clk <= 0;
65 forever #5 clk = ~clk;
66 end
67
68 endmodule

The top-level module is typical of most testbenches. It connects the DUT and
the testbench components.

Layered Organization of Testbenches 19
111 module top;
112
113 wire [2:0] q;
114 wire clk, rst_n;
115
116 clkgen ckgn (clk);
117 counter cntr (q, rst_n, clk);
118 control ctrl (rst_n, clk);
119 scoreboard score (q, rst_n, clk);
120
121 endmodule

We have illustrated a simple testbench that contains the elements used in
much more sophisticated testbenches. Sequential designs that maintain
internal state require a scoreboard that operates in parallel with the DUT. The
scoreboard performs the same computations as the DUT but at a higher level
of abstraction. The scoreboard also compares its own computation with
inputs received from the DUT.

1.4 Layered Organization of Testbenches

Just as a design is a network of design components, a testbench is a network
of verification components. The OVM defines verification components, their
structure, and interfaces. This section describes the essential OVM
components.

OVM testbenches are organized in layers. The bottommost layer is the DUT,
an RTL device with pin-level interfaces. Above that is a layer of transactors,
devices that convert between the transaction-level and pin-level worlds. The
components in the layers above the transactor layer are all transaction-level
components. The diagram below illustrates the layered testbench
organization. The box on the left identifies the name of the layer. The box on
the right lists the type of components in that layer. The vertical arrows show
which layers communicate directly. For example, the control layer
communicates with the analysis, operational, and transactor layers, but not
directly with the DUT.

20 Layered Organization of Testbenches

Figure 1-7 OVM Testbench Architecture Layers

You can also view a testbench as a concentric organization of components.
The innermost ring maps to the bottom layer, and the outermost ring maps to
the top layer. Some find it easier to understand the relationships between the
layers using a netlist style diagram.

DUT

Transactors

Control

Analysis

Operational

Untimed
Transaction-Level

Untimed
Transaction-Level

Untimed or
Partially Timed

Transaction-Level

Transaction

Pins

Pins

Test Controller

Coverage Collectors
Performance Analyzer
Scoreboards
Golden Reference Models

Stimulus Generators
Masters
Slaves
Constraints

Drivers
Monitors
Responders

Pin-Level Design

P
rotocol-

S
pecific

D
esign-S

pe
cific

T
estbench-

S
pecific

Layered Organization of Testbenches 21
Figure 1-8 Concentric Testbench Organization

1.4.1 Transactors

The role of a transactor in a testbench is to convert a stream of transactions to
pin-level activity or vice versa. Transactors are characterized by having at
least one pin-level interface and at least one transaction-level interface.
Transactors come in a wide variety of shapes, colors, and styles. We’ll focus
on monitors, drivers, and responders.

Monitor. A monitor, as the name implies, monitors a bus. It watches the pins
and converts their wiggles to a stream of transactions. Monitors are passive,
meaning they do not affect the operation of the DUT in any way.

Driver. A driver converts a stream of transactions (or sequence items) into
pin-level activity.

Responder. A responder is much like a driver, but it responds to activity on
pins rather than initiating activity.

1.4.2 Operational Components

The operational components are the set of components that provide all the
things the DUT needs to operate. The operational components are responsible
for generating traffic for the DUT. They are all transaction-level components
and have only transaction-level interfaces. The ways to generate stimulus are

DUT responderdriver
master/
stim gen

monitor monitor

scoreboard

coverage

controller

slave

22 Layered Organization of Testbenches
as varied as the kinds of devices there are to verify. We’ll look at three general
kinds of operational components: stimulus generators, masters, and slaves.

Stimulus Generator. Stimulus generators create a stream of transactions for
exercising the DUT. Stimulus generators can be random, directed, or directed
random; they can be free running or have controls; and they can be
independent or synchronized. The simplest stimulus generator randomizes
the contents of a request object and sends that object to a driver. OVM also
provides a modular, dynamic facility for building complex stimulus called
sequences. These are discussed in detail in Chapter 8.

Master. A master is a bidirectional component that sends requests and
receives responses. Masters initiate activity. Like stimulus generators, they
can send individual randomized transactions or sequences of directed or
directed-random transactions. Masters may use the responses to determine
their next course of action. Masters can also be implemented in terms of
sequences.

Slave. Slaves, like masters, are bidirectional components. They respond to
requests and return responses (in contrast to masters, which send requests
and receive responses).

Figure 1-9 A Master and a Slave

1.4.3 Analysis Components

Analysis components receive information about what’s going on in the
testbench and use that information to make some determination about the
correctness or completeness of the test. Two common kinds of analysis
components are scoreboards and coverage collectors.

Scoreboard. Scoreboards are used to determine correctness of the DUT, to
answer does-it-work questions. Scoreboards tap off information going into
and out of the DUT and determine if the DUT is responding correctly to its
stimulus.

Coverage Collector. Coverage collectors count things. They tap into streams of
transactions and count the transactions or various aspects of the transactions.
The purpose is to determine verification completeness by answering are-we-

slavemaster

requests

responses

Two Domains 23
done questions. The particular things that a coverage collector counts
depends on the design and the specifics of the test. Common things that
coverage collectors count include: raw transactions, transactions that occur in
a particular segment of address space, and protocol errors. The list is
limitless.

Coverage collectors can also perform computations as part of a completeness
check. For example, a coverage collector might keep a running mean and
standard deviation of data being tracked. Or it might keep a ratio of errors to
good transactions.

1.4.4 Controller

Controllers form the main thread of a test and orchestrate the activity.
Typically, controllers receive information from scoreboards and coverage
collectors and send information to environment components.

For example, a controller might start a stimulus generator running and then
wait for a signal from a coverage collector to notify it when the test is
complete. The controller, in turn, stops the stimulus generator. More elaborate
variations on this theme are possible. In an example of a possible
configuration, a controller supplies a stimulus generator with an initial set of
constraints and starts the stimulus generator running. When a particular ratio
of packet types is achieved, the coverage collector signals the controller.
Rather than stopping the stimulus generator, the controller may send it a new
set of constraints.

1.5 Two Domains

We can view the set of components in a testbench as belonging to two
separate domains. The operational domain is the set of components, including
the DUT, that operate the DUT. These are the stimulus generators, bus
functional models (BFM), and similar components that generate stimulus and
provide responses that drive the simulation. The DUT, responder, and driver
transactions—along with the environment components that directly feed or
respond to drivers and responders—comprise the operational domain. The
rest of the testbench components—monitor transactors, scoreboards,
coverage collectors, and controller—comprise the analysis domain. These are
the components that collect information from the operational domain.

Data must be moved from the operational domain to the analysis domain in a
way that does not interfere with the operation of the DUT and preserves
event timing. This is accomplished with a special communication interface
called an analysis port. Analysis ports are a special kind of transaction port in

24 Two Domains
which a publisher broadcasts data to one or more subscribers. The publisher
signals all the subscribers when it has new data ready.

One of the key features of analysis ports is that they have a single interface
function, write(). Analysis FIFOs, the channels used to connect analysis
ports to analysis components, are unbounded. This guarantees that the
publisher doesn’t block and that it deposits its data into the analysis FIFO in
precisely the same delta cycle in which it was generated. Chapter 7 discusses
analysis ports and analysis FIFOs in more detail.

Figure 1-10 Connection between Operational and Analysis Domains

Generally, the operational and analysis domains are connected by analysis
ports and control and configuration interfaces. Analysis ports tap off data
concerning the operation of the DUT. These data might include bus
transactions, communication packets, and status information (success or
failure of specific operations). The components in the analysis domain
analyze the data and make decisions. The results of those decisions can be
communicated to the operational domain via the control and configuration
interfaces. Control and configuration interfaces can be used to start and stop
stimulus generators, change constraints, modify error rates, or manipulate
other parameters affecting how the testbench operates.

Operational Domain

Analysis Domain

Analysis
Ports

Analysis
InterfacesControl and

Configuration
Interfaces

Summary 25
1.6 Summary

In this chapter we looked at how to structure an overall verification process.
The process is based on two fundamental questions, Does it work? and Are
we done? Simple examples illustrated how to build testbench machinery to
answer these questions with devices such as stimulus generators and
scoreboards. The rest of this book shows how to apply transaction-level
modeling techniques to build practical, scalable, reusable testbench
components that answer these questions and shows how to connect them to
form testbenches.

26 Summary

2

Fundamentals of Object-
Oriented Programming
Software engineering, unconstrained by the physics of electricity and
magnetism, has long sought to build reusable, interchangeable, robust
components. An important programming model that addresses the problem
is called object-oriented programming (OOP). The central idea of OOP is that
programs are organized as a collection of interacting objects, each with its
own data space and functions. Objects can be made reusable because they
encapsulate everything they need to operate, can be built with minimal or no
external dependencies, and can be highly parameterized.

This chapter introduces the basic concepts of OOP, including the notions of
encapsulation and interface. The chapter concludes with a discussion of why
OOP is important for building testbenches.

2.1 Procedural vs. OOP

To understand OOP and the role it plays in verification, it is beneficial to first
understand traditional procedural programming and its limitations. This sets
the foundation for understanding how OOP can overcome those limitations.

In the early days of assembly language programing, programmers and
computer architects quickly discovered that programs often contained
sequences of instructions that were repeated throughout a program.
Repeating lots of code (particularly with a card punch) is tedious and error
prone. Making a change to the sequence involved locating each place the
sequence appeared in the program and repeating the change in each location.
To avoid the tedium and the errors caused by repeated sequences, the
subroutine was invented.A subroutine is a unit of reusable code. Instead of

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_2,
© Mentor Graphics Corporation, 2009

28 Procedural vs. OOP
coding the same sequence of instructions inline, you call a subroutine.
Parameters passed to subroutines allow you to dynamically modify the code.
That is, each call to a subroutine with different values for the parameters
causes the subroutine to behave differently based on the specific parameter
values.

Every programming language of any significance has constructs for creating
subroutines, procedures, or functions, along with syntax for passing in
parameters and returning values. These features are useful for creating
operations that are used often. However, some operations are very common
(such as I/O, data conversions, numerical methods, and so forth). And to
avoid having to rewrite these operations repeatedly, programmers found it
valuable to create libraries of commonly used functions. As a result, most
programming languages include such a library as part of the compiler
package. One of the most well-known examples is the C library that comes
with every C compiler. It contains useful functions such as printf(), cos(),
atof(), and qsort(). These are functions that virtually every programmer
will use at some time or another.

Imagine having to write your own I/O routines or your own computation for
converting numbers to strings and strings to numbers. There was a time when
programmers did just that. Libraries of reusable functions changed all that
and increased overall programming productivity.

As software practice and technology advanced, programmers began thinking
at higher levels of abstraction than instructions and subroutines. Instead of
writing individual instructions, programmers now code in languages that
provide highly abstracted models of the computer, and compilers or
interpreters translate these models into specific instructions. A library, such as
the C library or STL in C++, is a form of abstraction. It presents a set of
functions that programmers can use to construct ever more complex
programs or abstractions.

In his seminal book Algorithms + Data Structures = Programs, Niklaus Wirth
explains that to solve any programming problem, you must devise an
abstraction of reality that has the characteristics and properties of the problem
at hand and ignore the rest of the details. He argues that the collection of data
you need to solve a problem forms the abstraction. So before you can solve a
problem, you first need to determine what data you need to have to create the
solution.

To continue building reusable abstractions, we need to create libraries of data
objects that can be reused to solve specific kinds of problems. The search for
ways to do this leads to the development of object-oriented technology.

Classes and Objects 29
Object-oriented program analysis and design is centered around data objects,
the functionality associated with each object, and the relationships between
objects.

The goal of OOP is to facilitate separation of concerns, a phrase coined by
Edsger Dijkstra in his 1974 essay titled, “On the Role of Scientific Thought.”1

In this essay he quotes himself:

It is what I sometimes have called “the separation of concerns,”
which, even if not perfectly possible, is yet the only available tech-
nique for effective ordering of one's thoughts, that I know of. This is
what I mean by “focussing one's attention upon some aspect”: it does
not mean ignoring the other aspects, it is just doing justice to the fact
that from this aspect's point of view, the other is irrelevant. It is being
one- and multiple-track minded simultaneously....

Object-oriented languages provide facilities to separate program concerns
and focus on them independently, and, to encapsulate data abstractions and
present them through well-defined interfaces. Complete object-oriented
programs are constructed by separating the program’s functionality into
distinct classes, defining the interfaces for each class, and then establishing
connections and interactions between components through their interfaces.

2.2 Classes and Objects

The primary unit of programming in object-oriented languages, such as
SystemVerilog, is the class. A class contains data elements, called members, and
tasks and functions, called methods. To execute an object-oriented program,
you must instantiate one or more classes in a main routine and then call
methods on the various objects. Although the terms class and object are
sometimes used interchangeably, typically, the term class refers to a class
declaration or an uninstantiated object, and the term object refers to an
instance of a class.

To illustrate these concepts, below is an example of a simple class called
register.

class register;
local bit[31:0] contents;

function void write(bit[31:0] d)
contents = d;

1. The complete text of Dijstra’s essay is at http://www.cs.utexas.edu/users/EWD/
ewd04xx/EWD447.PDF

30 Classes and Objects
endfunction

function bit[31:0] read();
return contents;

endfunction
endclass

This very simple class has one member, contents, and two methods, read()
and write(). To use this class, you create objects by instantiating the class
and then call the object’s methods, as shown below

module top;
register r;
bit[31:0] d;

initial begin
r = new();
r.write(32’h00ff72a8);
d = r.read();

end
endmodule

The local attribute on class member contents tells the compiler to strictly
enforce the boundaries of the class. If you try to access contents directly, the
compiler issues an error. You can only access contents through the publicly
available read and write functions. This kind of access control is important to
guarantee no dependencies on the internals of the class and thus enable the
class to be reused.

You can use classes to create new data types, such as our simple register.
Using classes to create new data types is an important part of OOP. You can
also use them to encapsulate mathematical computations or to create
dynamic data structures, such as stacks, lists, queues, and so forth.
Encapsulating the organization of a data structure or the particulars of a
computation in a class makes the data structure or computation highly
reusable.

As a more complete example, let’s look at a useful data type, the pushdown
stack. A stack is a LIFO (last in first out) structure. Items are put into the stack
with push(), and items are retrieved from the stack with pop(). pop()
returns the last item pushed and removes it from the data structure. The
internal member stkptr keeps track of the top of the stack. The item it points
to is the top, and everything below it (that is, with a smaller index) is lower in
the stack. Below is a basic implementation of a stack in SystemVerilog.

43 class stack;
44

Classes and Objects 31
45 typedef bit[31:0] data_t;
46 local data_t stk[20];
47 local int stkptr;
48
49 function new();
50 clear();
51 endfunction
52
53 function bit pop(output data_t data);
54
55 if(is_empty())
56 return 0;
57
58 data = stk[stkptr];
59 stkptr = stkptr - 1;
60 return 1;
61
62 endfunction
63
64 function bit push(data_t data);
65
66 if(is_full())
67 return 0;
68
69 stkptr = stkptr + 1;
70 stk[stkptr] = data;
71 return 1;
72
73 endfunction
74
75 function bit is_full();
76 return stkptr >= 19;
77 endfunction
78
79 function bit is_empty();
80 return stkptr < 0;
81 endfunction
82
83 function void clear();
84 stkptr = -1;
85 endfunction
86
87 function void dump();
88
89 $write(“stack:”);
90 if(is_empty()) begin
91 $display(“<empty>”);
92 return;
93 end
94
95 for(int i = 0; i <= stkptr; i = i + 1) begin
96 $write(“ %0d”, stk[i]);
97 end

32 Classes and Objects
98
99 if(is_full())
100 $write(“ <full>”);
101 $display(““);
102
103 endfunction
104 endclass
file: 02_intro_to_OOP/01_stack/stack.sv

The class stack encapsulates everything there is to know about the stack data
structure. It contains an interface and an implementation of the interface. The
interface is the set of methods that you use to interact with the class. The
implementation is the behind-the-scenes code that makes the class operate.
The interface to our stack contains the following methods:

function new();
function bit pop(output DATA data);
function bit push(DATA data);
function bit is_full();
function bit is_empty();
function void clear();
function void dump();

There is no other way to interact with stack than through these methods.
There are also two data members of the class, stk and stkptr, that represent
the actual stack structure. However, these two members are local, which
means that the compiler will disallow any attempts to access them from
outside the class. By preventing access to the internals of the data structure
from outside, we can make some guarantees about the state of the data. For
example, push() and pop() can rely on the fact that stkptr is correct and
points to the top of the stack. If it were possible to change the value of stkptr
by means other than using the interface functions, then push() and pop()
would have to resort to additional time-consuming and possibly unreliable
checks to determine the validity of stkptr.

The implementation of the interface occurs inline. The class declaration
contains not only the interface definition, but also the implementation of each
of the interface functions. Both C++ and SystemVerilog allow the
implementation to be separate from the interface. Separating the interface and
the implementation is an important concept. Programmers writing in C++ can
use header files to capture the interface and .cc (or .cpp or whatever the
compiler uses) to hold the implementation.

There are some important by-products of enforcing access through class
interfaces. One is reusability. We can more easily reuse classes whose

Object Relationships 33
interfaces are well defined and well explained than those whose interfaces are
fuzzy. Another important by-product of enforcing access through class
interfaces is reliability. The authors of the class can guarantee certain
invariants (for example, stkptr is less than the size of the available stk array)
when they know that users will not modify the data other than by the means
provided. In addition, users can expect the state of the object to be predictable
when they adhere to the interface. Clarity is another by-product. An interface
can describe the entire semantics of the class. The object will do nothing other
than execute the operations available through the interface. This makes it
easier for those who use the class to understand exactly what it will do.

2.3 Object Relationships

The true power of OOP becomes apparent when objects are connected in
various relationships. There are many kinds of relationships that are possible.
We will consider two of the most fundamental relationships HAS-A and IS-A.

2.3.1 HAS-A

HAS-A refers to the concept of one object contained or owned by another. The
HAS-A relationship is represented by members. In our stack class, for
example, the stack HAS-A stack pointer (stkptr) and stack array. Those are
primitive data types, not classes, but the same concept of HAS-A applies. In
SystemVerilog you can create HAS-A relationships between classes with
references or pointers. The figure below illustrates the underlying memory
model for a HAS-A relationship. Object A contains a reference or a pointer to
object B.

Figure 2-1 HAS-A Relationship

The Unified Modeling Language (UML) is a graphical language for
representing systems, particularly the relationships between objects in those

A

B

34 Object Relationships
systems. The UML for a HAS-A relationship is expressed with a line between
objects and a filled-diamond arrowhead, as in the diagram below.

Figure 2-2 UML for a HAS-A Relationship

Object A owns an instance of object B. Coding a HAS-A relationship in
SystemVerilog involves instantiating one class inside another or in some other
way providing a handle to one class that is stored inside another.

class B;
endclass

class A;
local B b;
function new();

b = new();
endfunction

endclass

class A contains a reference to class B. The constructor for class A,
function new(), calls new() on class B to create an instance of it. The
member b holds a reference to the newly created instance of B.

2.3.2 IS-A

The IS-A relationship is most often referred to as inheritance. A new class is
derived from a previously existing object and inherits its characteristics.
Objects created with inheritance are composed using IS-A. The derived object
is considered a sub-class or a more specialized version of the parent object.

A B

Object Relationships 35
To illustrate the notion of inheritance, Figure 2-3 uses a portion of the
taxonomy of mammals.

Figure 2-3 IS-A Example: Mammal Taxonomy

Animals that are members of the cetacia, carnivora, or primate orders are
mammals. These very different kinds of creatures share the common traits of
mammals. Yet cetacia (whales, dolphins), carnivora (dogs, bears, raccoons),
and primates (monkeys, humans) each have their distinct and unmistakable
characteristics. To use OO terminology, a bear IS-A carnivore and a carnivore
IS-A mammal. In other words, a bear is composed of attributes of both
mammals and carnivores plus additional attributes that distinguish it from
other carnivores.

To express IS-A using UML, we draw a line between objects with an open
arrow head pointing to the base class. Traditionally, we draw the base class
above the derived classes, and the arrows point upward, forming an
inheritance tree (or a directed acyclic graph that can be implemented in
languages, such as C++, that support multiple inheritance).

Figure 2-4 UML for IS-A Relationship

When composing two objects together in a computer program using
inheritance, the new derived object contains characteristics of the parents and

Mammalia

Cetacia Carnivora Primates

mammalia

carnivoracetacia primates

36 Virtual Functions and Polymorphism
usually includes additional characteristics. The figure below illustrates the
underlying memory model for an IS-A composition. In the example, the class
B is derived from A.

Figure 2-5 Example of IS-A Relationship

SystemVerilog uses the keyword extends to identify an inheritance
relationship between classes:

class A;
int i;
float f;

endclass

class B extends A;
string s;

endclass

Class B is derived from A, so it contains all the attributes of A. Any instance of
B not only contains the string s, but also the floating point value f and the
integer i.

2.4 Virtual Functions and Polymorphism

One of the reasons for composing objects through inheritance is to establish
different behaviors for the same operation. In other words, the behavior
defined in a derived class overrides behavior defined in a base class. The
means to do this is through virtual functions. A virtual function is one that can
be overridden in a derived class. Consider the following generic packet class.

class generic_packet;
addr_t src_addr;
addr_t dest_addr;
bit m_header [];
bit m_trailer []’
bit m_body [];

virtual function void set_header();

B

A

Virtual Functions and Polymorphism 37
virtual function void set_trailer();
virtual function void set_body();

endclass

It has three virtual functions to set the contents of the packet. Different kinds
of packets require different kinds of contents. We use generic_packet as a
base class and derive different kinds of packets from it.

class packet_A extends generic packet;
virtual function void set_header();
endfunction
virtual function void set_trailer();
endfunction
virtual function void set_body();
endfunction

endclass

class packet_B extends generic_packet;
virtual function void set_header();
endfunction
virtual function void set_trailer();
endfunction
virtual function void set_body();
endfunction

endclass

Both packet_A and packet_B may have different headers and trailers and
different payload formats. The knowledge about how the parts of the packet
are formatted is kept locally inside the derived packet classes. The virtual
functions set_header(), set_trailer(), and set_body() are implemented
differently in each subclass based on the packet type. The base class
generic_packet establishes the organization of the class and the types of
operations that are possible, and the derived classes can modify the behavior
of those operations.

Virtual functions are used to support polymorphism: multiple classes that can
be used interchangeably, each with different behaviors. For example, some
processing of packets may not need to know what kind of packet is being
processed. The only information necessary is that the object is indeed a
packet; that is, it is derived from the base class. Another way to say that is, the
the current packet is related to the base class packet via the IS-A relationship.
Virtual functions are the mechanism by which we can code alternate
behaviors for different variations of a packet.

38 Virtual Functions and Polymorphism
To look a little deeper at how virtual functions work, let’s consider three
classes related to each other by the IS-A relationship.

Figure 2-6 Three Classes Related with IS-A

figure is the base class; polygon is derived from figure; square is derived
from polygon. Each class has two functions, draw(), which is virtual, and
compute_area(), which is non-virtual. The following sample shows the
SystemVerilog code:

38
39 class figure;
40
41 virtual function void draw();
42 $display(“figure::draw”);
43 endfunction
44
45 function void compute_area();
46 $display(“figure::compute_area”);
47 endfunction
48
49 endclass
50
51 class polygon extends figure;
52
53 virtual function void draw();
54 $display(“polygon::draw”);
55 endfunction
56
57 function void compute_area();
58 $display(“polygon::compute_area”);
59 endfunction
60
61 endclass

figure

polygon

square

Virtual Functions and Polymorphism 39
62
63 class square extends polygon;
64
65 virtual function void draw();
66 $display(“square::draw”);
67 endfunction
68
69 function void compute_area();
70 $display(“square::compute_area”);
71 endfunction
72
73 endclass
file: 02_intro_to_OOP/03_virtual/virtual.sv

Each function prints out its fully qualified name in the form
class_name::function_name. We can write a simple program that calls each
of these functions to understand how the virtual functions are bound.

75 program top;
76 figure f;
77 polygon p;
78 square s;
79
80 initial begin
81 s = new();
82 f = s;
83 p = s;
84
85 p.draw();
86 p.compute_area();
87 f.draw();
88 f.compute_area();
89 s.draw();
90 s.compute_area();
91 end
92 endprogram
file: 02_intro_to_OOP/03_virtual/virtual.sv

The following shows what happens when we run this program:

square::draw
polygon::compute_area
square::draw
figure::compute_area
square::draw
square::compute_area

First we create s, a square, and then we assign it to f and p. The immediate
base class of square is polygon and the base class of polygon is figure. From

40 Generic Programming
the printed output, we can conclude that the functions are bound according to
the following table:

In all cases, compute_area() was bound to the particular compute_area()
function specified by the type of the reference that called it—p is a reference
to a polygon, thus polygon::compute_area() is bound. This is because
compute_area() is non-virtual. The compiler can easily determine which
version of the function to call simply based on the type of the object.

Because draw() is virtual, it is not always possible for the compiler to
determine which function to call. The decision is made at run time using a
virtual table, a table of function bindings. A virtual table is used to bind
functions whose bindings cannot be entirely determined at compile time. A
good reference for learning more about how virtual tables work is Inside the
C++ Object Model by Stanley B. Lippman.

Notice that even though p is a polygon, the call to p.draw() results in
square::draw() being called not polygon::draw(), as you might expect.
The same thing happens with f—f.draw() is bound to square::draw(). The
object we originally instantiated is a square, and even though we assign
handles of different types, the fact that it is a square is not forgotten. This
works only because square is derived from polygon, which in turn is derived
from figure, and because draw() is declared as virtual. A compile time error
about type incompatibility occurs if you try to assign s to p and s is not
derived from p.

2.5 Generic Programming

Recall that object-oriented languages provide facilities to separate program
concerns and focus on them independently. An implication of separating
concerns is that each concern is represented only once. Duplicating code
violates the principle. In practice, many problems are quite similar, and their
solution requires code that is similar, but not identical. Intuitively, we want to
take advantage of code similarity to write code that can be used in as many
situations as possible. This intuition leads us to writing generic code, code

p.draw() square::draw()

p.compute_area() polygon::compute_area()

f.draw() square::draw()

f.compute_area() figure::compute_area()

s.draw() square::draw()

s.compute_area() square::compute_area()

Generic Programming 41
that is highly parameterized so that it can be easily reused in a wide variety of
situations.

Details of generic code are supplied at compile time or run time instead of
hard coding them. Any code that has parameters, such as function calls, can
be considered generic, but the term is usually reserved for code built around
templates (in C++) or parameterized classes (in SystemVerilog). Making
programs generic is consistent with the OOP goal of separating concerns.
Thus OOP languages provide facilities for building generic code.

A parameterized class is one that (obviously) has parameters. The syntax in
SystemVerilog for identifying parameters is a pound sign (#) in the class
header followed by a parenthesized list of parameters. As an example,
consider the following parameterized class:

class param #(type T=int, int R=16);
endclass

This class has two parameters, T, which is a type parameter and R, which is an
integer parameter. Instances of a parameterized class with specific values for
the parameters create specializations, that is, versions of the code with the
parameters applied.

param #(real, 29) z;
param #(int unsigned, 12) q;

The above declarations create specializations of the parameterized class
param. The class name and parameters identify specializations. Thus,
specializations are in fact, unique types. The compiler will not allow you to
assign q to z, or vice versa, because they are objects of different types.

type parameters allow you to write type-independent code, code whose data
structures and algorithms can operate on a wide range of data types. For
example:

class maximizer #(type T=int);
function T max(T a, T b);

if(a > b)
return a;

else
return b;

endfunction
endclass

The parameterized class maximizer has a function max() that returns the
maximum of two values. The max algorithm is the same no matter the type of

42 Generic Programming
the comparison objects. In this case, the only restriction is that the objects be
comparable with the greater than (>) operator.

Classes cannot be meaningfully compared using the greater-than operator, so
a different version of maximizer is necessary to deal with classes. To make a
version of maximizer that will return the largest of two class objects, we must
define a method in each class that will compare objects.

class maximizer #(type T=int);
function T max(T a, T b);

if(a.comp(b) > 0)
return a;

else
return b;

endfunction
endclass

This presumes that the type parameter T is really a class, not a built-in type,
such as int or real. Further, it presumes that T has a function called comp(),
which is used to compare itself with another instance. The OVM library
contains a parameterized component called ovm_in_order_comparator#(T),
which is used to compare streams of transactions. It has two variants, one for
comparing streams of built-in types, and one for comparing streams of
classes. The reason we need two in-order comparator classes is exactly the
same reason we need two maximizers—SystemVerilog does not support
operators that can operate on either classes or built-in types.

2.5.1 Generic Stack

Our stack is not particularly generic. It has a fixed stack size of 20, and the
data type of the items kept on the stack is fixed to be int. Below is a more
generic form of stack that changes these fixed characteristics to parametrized
characteristics.

53 class stack #(type T = int);
54
55 local T stk[];
56 local int stkptr;
57 local int size;
58 local int tp;
59
60 function new(int s = 20);
61 size = s;
62 stk = new [size];
63 clear();
64 endfunction
65

Generic Programming 43
66 function bit pop(output T data);
67
68 if(is_empty())
69 return 0;
70
71 data = stk[stkptr];
72 stkptr = stkptr - 1;
73 return 1;
74
75 endfunction
76
77 function bit push(T data);
78
79 if(is_full())
80 return 0;
81
82 stkptr = stkptr + 1;
83 stk[stkptr] = data;
84 return 1;
85
86 endfunction
87
88 function bit is_full();
89 return stkptr >= (size - 1);
90 endfunction
91
92 function bit is_empty();
93 return stkptr < 0;
94 endfunction
95
96 function void clear();
97 stkptr = -1;
98 tp = stkptr;
99 endfunction
100
101 function void traverse_init();
102 tp = stkptr;
103 endfunction
104
105 function int traverse_next(output T t);
106 if(tp < 0)
107 return 0; // failure
108
109 t = stk[tp];
110 tp = tp - 1;
111 return 1;
112
113 endfunction
114
115 virtual function void print(input T t);
116 $display(“print is unimplemented”);
117 endfunction
118

44 Generic Programming
119 function void dump();
120
121 T t;
122
123 $write(“stack:”);
124 if(is_empty()) begin
125 $display(“<empty>”);
126 return;
127 end
128
129 traverse_init();
130
131 while(traverse_next(t)) begin
132 print(t);
133 end
134 $display();
135
136 endfunction
137
138 endclass
file: 02_intro_to_OOP/02_generic_stack/stack.sv

The generic stack class is parameterized with the type of the stack object. The
parameter T contains a type. In this case, T can be either a class or a built-in
type because we are not using operators directly on objects of type T. Any
place in the class where we previously used int as the stack type, we now use
T. For example, push() now takes an argument of type T. Class parameters,
such as T, are compile-time parameters, meaning the value is established at
compile time. To specialize stack#(T), we instantiate it with a specific value
for the type. For example:

stack #(real) real_stack;

This statement creates a specialization of stack that uses real as the type of
object on the stack.

The size of the stack is no longer fixed at 20. We use a dynamic array to store
the stack, whose size is specified as a parameter to the constructor. Unlike T,
the argument size is a run-time parameter—its value is specified when the
program runs. This lets us create multiple stacks, each with a different size.

stack #(real) big_stack;
stack #(real) little_stack;

...

big_stack = new(2048);
little_stack = new(6);

Classes and Modules 45
big_stack and little_stack are of the same type. They use the same
specialization of stack#(T). However, they are each instantiated with
different size parameters.

In making stack generic, we made another change. We replaced dump() with
traverse_init() and traverse_next(). dump() relies on the type of the
stack elements, which is not known until compile time. We need to be able to
traverse the stack and format each element no matter what the element type
is. It could be an int, or it could be a complex class with multiple members.
We don’t know what it will be. To keep stack#(T) generic, we must resist all
temptation to establish any reliance on the type of the stack elements.

Whereas dump() will run through the stack elements and print them in order,
traverse_init() sets an internal traversal pointer (tp) to point to the top of
the stack, and traverse_next() hands the current element (as pointed to by
tp) back to the caller and decrements tp. The stack maintains some state
information about the traversal. The state information is reset when
traverse_init() is called.

By making stack#(T) generic, removing reliance on hardcoded types and
sizes, we have made this component highly reusable.

2.6 Classes and Modules

Interestingly, HDLs, such as Verilog and VHDL, though not considered
object-oriented languages, are built around concepts quite similar to classes
and objects. Module instances in Verilog, for example, are objects, each with
its own data space and set of tasks and functions. Just like objects in OO
programs, each instance of a module is an independent copy. All instances
share the same set of tasks and functions and the same interfaces, but the data
contained inside each one is independent from all other instances. Modules
are controlled by their interfaces. Verilog modules do not support inheritance
(that is, the ability to form IS-A relationships) or type parameterization, and
they are static, which makes them unsuitable for true OOP.

The similarity between classes and modules opens up an opportunity for us
to use class objects in a hardware context. We can create verification
components as instances of classes, giving us the flexibility of classes along
with the connection to hardware elements. The designers of SystemVerilog
have capitalized on this relationship when extending Verilog with classes,
providing the capability for a class to work a lot like modules.

46 Classes and Modules
The table below compares features of classes in Verilog, SystemVerilog, and
C++.

The SystemVerilog feature that makes this possible is the virtual interface. A
virtual interface is a reference to an interface (here we refer to the
SystemVerilog interface construct). We can write a class containing references
to items inside an interface that doesn’t yet exist (that is, it isn’t instantiated).
When the class is instantiated, the virtual interface is connected to a real
interface. This makes it possible for a class object to both drive and respond to
pin activity. SystemC modules are implemented as classes and allow for pins
to be in the port list, providing the same sort of structure.

HDLs, such as Verilog and VHDL, lack many OOP facilities, and thus are not
well suited for building testbenches. The fundamental unit of programming
in most HDLs is the module, which is a static object. Modules come into
existence at the very beginning of the program and persist unmodified until
the program completes. They are syntactically static as well—the syntactic
means to modify a module to create a variant are limited. Verilog allows you
to parameterize scalar values, but not types. Often you are reduced to cutting
and pasting code, then making local modifications. If you have ten different
variations you need in a particular design, you must paste ten copies in
appropriate locations and then locally modify each one. Should the template
module change (the one that you pasted around to create the variants), you’ll
have to locate each instance and make those same changes in each one. This
process is not all that different from what our assembly language
programmers had to do fifty years ago.

Feature Verilog
Modules

C++
Classes

SystemVerilog
Classes

local data space yes yes yes

function interface kind of yes yes

port interface yes no yes

inheritance no yes/multiple yes/single

type parameterization no yes yes

dynamic no yes yes

Classes and Modules 47
Sidebar: Simula 67

The relationship between class objects and hardware simulation has been
around for quite some time. Simula 67,1 one of the earliest OOP
languages, was developed explicitly for the purpose of building discrete
event models. Simula 67 has the notion of class objects and a simulation
kernel. It even has a kind of PLI for connecting in external Fortran
programs. Simula provides DETACH and RESUME keywords, which
allow processes to be spawned and reconnected, sort of a fork/join. It has
a special built-in class called SIMULATION, which provides event list
features.

Even though the terms object and object-oriented are not used at all in
Simula 67, all modern object-oriented programs can trace their lineage to
this early programming language. Discrete event simulation languages
also can trace their genesis to Simula 67. For many, bringing together the
ideas of OOP and hardware simulation seems new; but in fact, the two
ideas were born together and only later parted ways. Using OOP with a
discrete event simulator brings us full circle.

According to Ole-Johan Dahl and Kristen Nygaard, Department of
Informatics, University of Oslo:2

Simula 67 still is being used many places around the world, but
its main impact has been through introducing one of the main
categories of programming, more generally labelled object-ori-
ented programming. Simula concepts have been important in the
discussion of abstract data types and of models for concurrent
program execution, starting in the early 1970s. Simula 67 and
modifications of Simula were used in the design of VLSI circuitry
(Intel, Caltech, Stanford). Alan Kay's group at Xerox PARC used
Simula as a platform for their development of Smalltalk (first lan-
guage versions in the 1970s), extending object-oriented program-
ming importantly by the integration of graphical user interfaces
and interactive program execution. Bjarne Stroustrup started his
development of C++ (in the 1980s) by bringing the key concepts
of Simula into the C programming language. Simula has also
inspired much work in the area of program component reuse and
the construction of program libraries.

1. Lamprecht, Gunther, “Introduction To Simula 67,” Vieweg, 1983
2. http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_OO_start.html

48 OOP and Verification
2.7 OOP and Verification

Building an object-oriented program and building a testbench are not very
different things. A testbench is a network of interacting components. OOP
deals with defining and analyzing networks of interacting objects. Objects can
be related through IS-A or HAS-A, and they communicate through interfaces.
OOP just naturally fits the problem of building testbenches.

Languages such as SystemC/C++ and SystemVerilog, which do provide OOP
facilities, are better suited for testbench construction than HDLs, such as
Verilog and VHDL. Using dynamic classes, parameterized classes,
inheritance, and parameterized constructors, you can build components that
are flexible, reusable, and robust. Spending a little extra time to build a
generic component can result in a large productivity gain when that
component is reused in different ways in many places.

3

Transaction-Level Modeling
The process of designing an electronic system involves taking abstract ideas
and successively replacing the abstractions with concrete details until you
reach a representation that can be manufactured in silicon. Since the advent of
the digital integrated circuit, the electronic design community has carefully
defined and codified abstractions, beginning with switches and gates, to
provide media in which designs are rendered. RTL is an example of an
abstraction medium commonly used to create designs. There are many tools
based on the RTL abstraction that make it a convenient way to initiate the
design and verification process.

However, as designs get larger and more complex, it becomes increasingly
convenient to represent them using abstractions higher than RTL. The
transaction level is becoming popular for creating the first incarnation of a
design that can be simulated and analyzed.

This chapter introduces the fundamental concepts of transaction-level
modeling (TLM). Transaction-level models consist of multiple processes
communicating with each other by sending transactions back and forth
through channels. This chapter illustrates these concepts with some
producer-consumer pairs communicating through transaction-level
interfaces.

3.1 Abstraction

In their book System Design with SystemC, Grötker et al., discuss models of
computation. They define a model of computation as having three
components:

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_3,
© Mentor Graphics Corporation, 2009

50 Abstraction
A model of time
Methods of communication between concurrent processes
Rules for process activation

RTL modeling uses a discrete model of time. Communication between
processes is done using nets, and process activation occurs when an input net
of a process changes its value.

In comparison, transaction-level models can be timed or untimed and use
channels to communicate between processes. Instead of sending individual
bits back and forth, the processes communicate by sending transactions to
each other through function calls.1 The world of TLM encompasses a range of
models of computation with different time, communication, and process
activation models. In each case, however, the contents of the communication
are at a higher level of abstraction than individual bits. Thus, a transaction-
level model is at a higher level of abstraction (it is more abstract) than an RTL
model. Combining the notions of abstraction and models of computation, we
can see that making an abstract model means abstracting time, data, and
function. The following sections discuss these elements in detail.

Abstract time. The time abstraction in a simulator refers to how often the
entire design state is consistent. Models that run in event-driven simulators
(for example, logic simulators) use a discrete notion of time, meaning events
happen at specific time points. Events usually (although not always) cause a
process of some sort to be invoked. As more events occur in a simulation,
more processes are invoked, and with more processes comes slower overall
simulation runs. Abstracting time reduces the number of points where the
design must be consistent and, therefore, the total number of events and
process activations that must occur. For example, in an RTL model, every net
must be consistent after every change. In cycle-accurate abstraction, the
design must be consistent only on the clock edges, eliminating all the events
that occur between clock edges. In a transaction-level model, the design state
must be consistent at the end of each transaction, each of which might span
many clock cycles.

Abstract data. Data refers to the objects communicated between
components. In RTL models, the data refers to individual bits that are passed
via nets between components. In transaction-level models, data is in the form

1. You could easily make the case that a transfer of a single bit is a transaction in the
most general sense. And even though a bit might be considered a transaction, this
discussion on transactions restricts the concept to cases involving higher levels of
abstractions than bits.

Definition of a Transaction 51
of transactions, heterogeneous structures that contain arbitrary collections of
elements.

Consider a packet in a communications device. At the lowest level of detail,
the packet contains start and stop bits, a header, error correction information,
payload size, payload, and a trailer. In a more abstract model, only the
payload and size might be necessary. The other pieces of data are not
necessary for the calculations being performed.

Abstract function. The function of a model is the set of all things it must do
at each event. Abstracting function reduces that set or replaces it with simpler
calculations. For example, in an ALU, you might choose to use the native
multiplication operation supplied in your modeling language instead of
coding the complete algorithm for a shift-and-add multiplier. The latter may
be part of the implementation, but at the higher level, the details of the shift-
and-add algorithm are unimportant. The primitives that are part of the
language define how you can abstract function. In a gate-level language, for
example, you build complex behaviors from gates. In an RTL language, you
build behaviors around arithmetic and logical operations on registers. In
TLM, you implement design functionality with function calls of arbitrary
complexity.

For the purposes of functional verification, RTL is the lowest-level abstraction
that we need to consider. Since synthesizers can effectively convert RTL to
gates, we don’t need to concern ourselves with lower levels of detail. Besides,
anything lower gets into electrical issues that are beyond the scope of logic
design.

3.2 Definition of a Transaction

To effectively talk about TLM in greater detail, we must step back and define
transactions.

This is the most general definition of a transaction. It says that a transaction is
everything that occurs in a design (or a module or subsystem within a design)
between two time points. While that is accurate, it is so general that it doesn’t
lead to practical application. A more useful definition is the following:

A transaction is a quantum of activity that occurs in
a design bounded by time.

52 Interfaces
This is the hardware-oriented notion of a transaction. When looking at a piece
of hardware, you can easily identify entities between which control or data is
transferred. In a bus-based design, reads and writes on a bus can be
considered transactions. In a packet-based communication system, sending a
packet is a transaction.

The following is a third definition:

This definition is the software-oriented notion of a transaction. In a
transaction-level model, activity is initiated by making function calls. The
function call contains parameters that are “sent” to the called function, and
the return value of the function contains data that is returned by the called
function. The called function could block and cause time to pass (in a timed
system) or it could return immediately.

3.3 Interfaces

Before we go into the details about how to build transaction-level models, we
will first take a small detour to discuss interfaces. The term interface is used in
several ways in OVM, each with a slightly different meaning. It’s an
unfortunate fact of history that the same word has come to mean so many
different things. Most of the time you can understand the meaning from the
context in which the term is used. The different uses in this book are the
following:

SystemVerilog interface
Object interface
DUT interface

SystemVerilog Interface. SystemVerilog provides a construct called an
interface, which is one of the primary container objects from which you
construct a design in SystemVerilog. We use virtual interfaces, which are
essentially pointers to interfaces, to connect module-based hardware to class-
based testbenches. The next chapter looks at the details of making that
connection.

A transaction is a single transfer of control or data
between two entities.

A transaction is a function call.

Interfaces 53
Object Interface. The publicly visible tasks and functions available on an
object form its interface. There are two slight variations of this meaning of
interface. One is straightfoward. Look at a class and determine what tasks
and functions are available to the user of the class to operate it. That’s its
interface. The other variation is to refer to a base class that defines the set of
tasks and functions available to operate the derived class. This meaning of
interface is more typically used with object-oriented languages that support
multiple inheritance, such as C++ or Java1. In those languages, you can
establish a requirement that the derived class supply certain functionality by
inheriting from an interface base class.

Figure 3-1 Interface Inheritance (with Multiple Inheritance)

The print_if interface specifies the prototypes for the print functions. Any
class that inherits from print_if is then obliged to implement print() and
sprint(). SystemVerilog does not support multiple inheritance, but it does
support pure virtual interfaces. A pure virtual interface is an interface in this
second context (a base class that defines a set of task and function prototypes)
that has no implementations. A pure virtual version of our print_if would
look as follows in SystemVerilog:

virtual class print_if;
pure virtual function void print();
pure virtual function string sprint();

endclass

Even though SystemVerilog does not support multiple inheritance, and OVM
is built on SystemVerilog, it is important to understand pure virtual interfaces
and interface inheritance because they are used heavily in OVM. In particular,
TLM ports and exports are derived from an interface class called

1. Java doesn’t support full multiple inheritance in the same manner as C++. It does
support interface inheritance. This establishes the requirement that a class derived
from an interface provide the specified functionality.

+print()
+sprint()

«interface»
print_if

+print()
+sprint()

employee

employee_base

+print()
+sprint()

department

department_base

54 TLM Idioms
tlm_if_base. Later in this book, we will have more discussion on port
construction.

DUT Interface. A piece of hardware is typically accessed through its
interfaces. In this context, an interface is composed of the pins and protocol
used to communicate to the device. For example, a device may have a USB
interface.

3.4 TLM Idioms

This section reviews the basic means of transmitting a transaction between
components. We’ll examine put, get, and transport forms of transaction
communication. These examples do not use the OVM library, as they are
intended to illustrate the essential mechanics of transaction-level
communication with minimal overhead. In the next section we’ll look at a
more complete example that uses the OVM library for communication.

3.4.1 Put

In a put configuration, one component sends transactions to another
component. The operation is called a put. The initiator is the component that
initiates the transfer, and the target is the component that receives the result.
Using TLM nomenclature, we say that the initiator puts transactions to the
target.

Figure 3-2 Put

Figure 3-2 indicates that A puts transactions to B. The initiator has a port
drawn as a square box, and the target has an export drawn as a circle. The flow
of control is from box to circle; that is, A will call B, which contains an
implementation of the port methods. The arrow shows the direction of the
data flow, and in this case, it indicates that data will move from A to B.

We can illustrate the code for these components with a producer and a
consumer. The producer is the initiator and the consumer is the target. We
must build these components in such a way that they do not know about each

A B

TLM Idioms 55
other a priori. To do that, we use a pure virtual interface to define the function
that will be used to transmit data between the initiator and the target. First,
let’s take a look at the SystemVerilog version of the producer.

46 class producer;
47
48 put_if put_port;
49
50 task run();
51
52 int randval;
53
54 for(int i=0; i<10; i++)
55 begin
56 randval = $random %100;
57 $display(“producer: sending %4d”, randval);
58 put_port.put(randval);
59 end
60
61 endtask
62
63 endclass : producer
file: 03_tlm/01_put/put.sv

The producer is a class, implying that it is created dynamically. It has two key
elements, a run() task and a put_port. The run() task is a simple task that
loops 10 times and puts 10 transactions. To keep things simple, our
transactions are integers. In practice, a transaction can be an arbitrarily
complex object such as a struct or a class.

To put transactions, the producer calls put() on the put_port. What is a
put_port? It is not a port in the traditional Verilog sense. It is a reference to a
put_if. What is a put_if? A put_if is the virtual interface class shared
between the initiator (producer) and target (consumer).

39 virtual class put_if;
40 pure virtual task put(int val);
41 endclass : put_if

put_if is a class with a pure virtual task; meaning, the task has no
implementation. Without an implementation of all of its tasks and functions,
a virtual class cannot be instantiated by itself. It must be the base class of
another class that is instantiated. In our case, the class derived from the pure
virtual put_if is consumer.

68 class consumer extends put_if;

56 TLM Idioms
69 task put(int val);
70 $display(“consumer: receiving %4d”, val);
71 endtask : put
72 endclass : consumer
file: 03_tlm/01_put/put.sv

consumer contains an implementation of put(); the pure virtual task defined
in put_if. The put() task implementation accepts the argument passed to it
and prints it. put_if plays a pivotal role in connecting the producer to the
consumer. A reference to it on the producer side, which we call a port,
establishes the requirement that there must be an implementation of the
functions and tasks in the interface to which this object will be bound. The
consumer is derived from the interface and, therefore, must implement the
pure virtual task satisfying the requirement.

The top-level module binds the producer to the consumer.

77 module top;
78
79 producer p;
80 consumer c;
81
82 initial begin
83 // instantiate producer and consumer
84 p = new();
85 c = new();
86 // connect producer and consumer
87 // through the put_if interface class
88 p.put_port = c;
89 p.run();
90 end
91 endmodule : top
file: 03_tlm/01_put/put.sv

Notice the assignment statement:

88 p.put_port = c;

It forms the linkage between the producer and the consumer. When new() is
called on p to create a new instance of producer, the member put_port has
no value. A run-time failure will occur if put_port.put() is called prior to
the linkage assignment. Assigning c to p.put_port gives the port a reference
to the consumer, which contains an implementation of the interface task
put().

TLM Idioms 57
3.4.2 Get

The complement to put is get. In this arrangement, the initiator receives a
transaction from the target. The flow of control is the same—from initiator to
target—but the direction of the data flow is the opposite. The initiator gets a
transaction from the target. In this case, the consumer is the initiator and the
producer is the target. The consumer initiates a call to the producer to retrieve
a transaction.

Figure 3-3 Get Configuration

Figure 3-3 is very similar to Figure 3-2. The only difference is that here the
arrow points from the target to the initiator instead of the other way around.
This indicates that the data flows from the target to the initiator. The
following is the SystemVerilog consumer (initiator).

62 class consumer;
63
64 get_if get_port;
65
66 task run();
67 int randval;
68 for(int i=0; i<10; i++)
69 begin
70 get_port.get(randval);
71 $display(“consumer: receiving %4d”, randval);
72 end
73 endtask
74 endclass
file: 03_tlm/02_get/get.sv

The consumer has a task, run(), which iterates 10 times to get 10 transactions.
Like the producer in the put example, the consumer here has a port. Also like
the put example, the port is a reference to a pure virtual interface, in this case
it is called get_if.

41 virtual class get_if;
42 pure virtual task get(output int t);

A B

58 TLM Idioms
43 endclass : get_if
file: 03_tlm/02_get/get.sv

get_if is a pure virtual interface class that defines the task get(). The target
(producer) is constructed in a similar fashion to the target in the put example.
It contains an implementation of the interface task. This producer produces a
random value between 0 and 99.

48 class producer extends get_if;
49
50 task get(output int t);
51 int randval;
52 randval = $random % 100;
53 $display(“producer: sending %4d”, randval);
54 t = randval;
55 endtask
56
57 endclass : producer
file: 03_tlm/02_get/get.sv

The connection at the top level will look very familiar.

79 module top;
80
81 producer p;
82 consumer c;
83
84 initial begin
85 // instantiate producer and consumer
86 p = new();
87 c = new();
88 // connect producer and consumer through the get_if
89 // interface class
90 c.get_port = p;
91 c.run();
92 end
93 endmodule : top
file: 03_tlm/02_get/get.sv

After creating instances of the producer and consumer by calling new(), the
two components are connected using a linkage assignment.

3.4.3 Transport

Transport is a bidirectional interface. The interface provides for transactions
to be sent from the initiator to the target and from the target back to the

TLM Idioms 59
initiator. Typically, we use this arrangement to model request-response
protocols. When talking about components with bidirectional interfaces, we
use the terms master and slave instead of initiator and target.

Figure 3-4 Bidirectional Transport Configuration

The master (A) does both a put and a get in a single function call. As we saw
in previous sections, put() and get() tasks each take one argument, the
argument they are putting or getting. However, the transport() task takes
two arguments, a request and a response. It sends the request and returns
with a response. The slave (B) accepts the request and replies with a response.

Let’s first look at the pure virtual interface.

37 virtual class transport_if;
38 pure virtual task transport(input int request,
39 output int response);
40 endclass : transport_if
file: 03_tlm/03_transport/transport.sv

The interface contains a single task, transport(), which takes two
arguments: a request that is passed to the target and a response that is
returned back to the initiator.

The master calls transport(), creates a request, and sends it to the slave
via transport. It processes the response that is returned.

45 class master;
46
47 transport_if port;
48
49 task run();
50
51 int request;
52 int response;
53
54 for(int i=0; i<10; i++)
55 begin

A B

60 TLM Idioms
56 request = $random % 100;
57 $display(“master: sending request %4d”,
58 request);
59 port.transport(request, response);
60 $display(“master: receiving response %4d”,
61 response);
62 end
63
64 endtask
65 endclass : master
file: 03_tlm/03_transport/transport.sv

The slave implements the transport() task. In our example, it does some
trivial processing of the request to create a response.

70 class slave extends transport_if;
71
72 task transport(input int request, output int response);
73 $display(“slave: receiving request %4d”,
74 request);
75 response = -request;
76 $display(“slave: sending response %4d”,
77 response);
78 endtask
79
80 endclass
file: 03_tlm/03_transport/transport.sv

The top-level linkage between master and slave works the same way the put
and get examples work.

85 module top;
86
87 master m;
88 slave s;
89
90 initial begin
91 // instantiate the master and slave
92 m = new();
93 s = new();
94
95 // connect the master and slave through
96 // the port interface
97 m.port = s;
98 m.run();
99 end
100
101 endmodule : top
file: 03_tlm/03_transport/transport.sv

TLM Idioms 61
The linkage assignment makes the connection between the master and the
slave. After the assignment completes, the master can use the connection to
directly call functions in the slave.

3.4.4 Blocking vs. Nonblocking

The interfaces we have looked at so far are blocking. That means that the
functions and tasks block execution until they complete. They are not allowed
to fail. There is no mechanism for any blocking call to terminate abnormally
or otherwise alter the flow of control. They simply wait until the request is
satisfied. In a timed system, this means that time may pass between the time
the call was initiated and the time it returns.

In the put configuration, we have two components, producer and consumer.
The producer generates a random number and sends it to the consumer via
put(). Before put() is called, there is no activity in the consumer. The call to
put() causes activity in the consumer, which prints the value of the
argument. During the time that the consumer is active, the producer is
waiting. This is the nature of a blocking call. The caller must wait until the call
finishes to resume execution.

Now contrast that description with a nonblocking call. A nonblocking call
returns immediately. The semantics of a nonblocking call guarantee that the
call returns in the same delta cycle in which it was issued, that is, without
consuming any time, not even a single delta cycle.

The pure virtual interface that connects the nonblocking slave to the master
looks much like the other pure virtual interfaces we’ve seen. The significant
difference is that the nb_get() function returns a status value instead of a
transaction.

41 virtual class get_if;
42 pure virtual function int nb_get(output int t);
43 endclass : get_if
file: 03_tlm/04_nonblocking/nbget.sv

The master (consumer) must check the status return from nb_get() to
determine whether the function successfully completed. Notice also that
we’ve introduced time into the model. The consumer checks every 4 ns to see
if a value is available.

78 class consumer;

62 TLM Idioms
79
80 get_if get_port;
81
82 task run();
83 int randval;
84 int ok;
85
86 for(int i=0; i<20; i++)
87 begin
88 #4;
89 if(get_port.nb_get(randval))
90 $display(“%t: consumer: receiving %4d”, $time,
randval);
91 else
92 $display(“%t: consumer: no randval”, $time);
93 end
94 endtask
95 endclass
file: 03_tlm/04_nonblocking/nbget.sv

The producer is organized as a function and a task. The task will be forked
(spawned) to run as a continuous process. It generates new random values
that the consumer will grab. However, each random value is only available
for 2 ns out of a 7 ns cycle. The function is an implementation of nb_get that
returns the value generated periodically by the run() task.

48 class producer extends get_if;
49
50 int randval = 0;
51 int rand_avail = 0;
52
53 function int nb_get(output int t);
54 if(rand_avail) begin
55 $display(“%t: producer: sending %4d”,
56 $time, randval);
57 t = randval;
58 return 1;
59 end
60 return 0;
61 endfunction
62
63 task run();
64 forever begin;
65 #5;
66 randval = $random % 100;
67 rand_avail = 1;
68 #2;
69 rand_avail = 0;
70 end
71 endtask

TLM Idioms 63
72
73 endclass : producer
file: 03_tlm/04_nonblocking/nbget.sv

When we run the example, we see that not every nb_get() call succeeds.

4: consumer: no randval
8: consumer: no randval
12: producer: sending -99
12: consumer: receiving -99
16: consumer: no randval
20: producer: sending -39
20: consumer: receiving -39
24: consumer: no randval
28: producer: sending -9
28: consumer: receiving -9
32: consumer: no randval
36: consumer: no randval
40: producer: sending 57
40: consumer: receiving 57
44: consumer: no randval
48: producer: sending -71
48: consumer: receiving -71
52: consumer: no randval
56: producer: sending -14
56: consumer: receiving -14
60: consumer: no randval
64: consumer: no randval
68: producer: sending 29
68: consumer: receiving 29
72: consumer: no randval
76: producer: sending 18
76: consumer: receiving 18
80: consumer: no randval

The blocking get configuration had only one process—the consumer that
continually made requests to the producer to send a new value. The
nonblocking variant has two processes: the consumer regularly polls the
producer to see if it has a value to grab, and the producer generates new
values asynchronously with respect to the consumer. Our nonblocking
producer makes a random value available every 7 ns. It waits 5 ns and then
generates a new value, and the new value is valid for 2 ns. The flag
rand_avail is set when a valid random value is available and cleared when
none is available.

The implementation of nb_get() for this example must check rand_avail to
see if there is indeed something to send. If not, it returns a 0 to indicate that

64 Isolating Components with Channels
the request failed. If there is something available, then it sends it and returns a
1 to indicate success.

Blocking interfaces are useful for operating two components synchronously.
Blocking calls wait until the requested operation completes, no matter how
long that might take. On the other hand, nonblocking interfaces are useful for
communicating asynchronously. They do not wait and can be used to poll
targets, as in the example shown.

3.5 Isolating Components with Channels

The previous section discussed simple mechanisms for moving a transaction
between two processes. In each, the initiator and target were tightly
synchronized by the transaction interface task call. In this section, we examine
the case where the initiator and target are more loosely coupled. The
decoupling is possible using a channel, in this case a FIFO, to manage the
synchronization between the initiator and the target, rather than relying on
the two components to synchronize themselves. Here we have two
components, an initiator A and a target B, plus a FIFO connecting the two
components.

Figure 3-5 Two Components Isolated with a FIFO

In the previous examples, one component had a port and the other an export.
The component with the port makes calls to the component with the export.
Here both A and B have ports. Instead of the initiator calling the target
directly, now we have both the initiator and the target calling the FIFO
channel. The channel provides the functions required by both the initiator
and the target.

The initiator uses a blocking put() to send transactions to the FIFO, and the
target uses a blocking get() to retrieve transactions from the FIFO. The FIFO
buffers the transactions and serves as a synchronizer. The initiator can
continue putting transactions into the FIFO until it is full. Since the initiator
uses a blocking put(), the initiator process will block when the FIFO is full.
Likewise, the target uses a blocking get() and will block when the FIFO is
empty. Essentially, the producer in this example is like the producer in the
blocking put example, and this consumer is like the consumer in the blocking

FIFO

A B

Isolating Components with Channels 65
get example. The FIFO replaces the target and provides the tasks necessary to
satisfy the interface requirements created by the ports on the producer and
consumer.

Let’s look at the code. This is the first example that uses the OVM library. The
OVM library includes a FIFO, called tlm_fifo, which is a parameterized
class with a variety of interfaces to support blocking and nonblocking
operations.

This producer looks a lot like the producer in the blocking put example. It
has a process, run(), that loops 10 times, generating 10 random values and
sending them to the target via the put_port.

42 class producer extends ovm_component;
43
44 ovm_blocking_put_port#(int) put_port;
45
46 function new(string name, ovm_component p = null);
47 super.new(name,p);
48 put_port = new(“put_port”, this);
49 endfunction
50
51 task run();
52
53 int randval;
54 string s;
55
56 for(int i = 0; i < 10; i++)
57 begin
58 randval = $random % 100;
59 $sformat(s, “sending %4d”, randval);
60 ovm_report_info(“producer”, s);
61 put_port.put(randval);
62 end
63 global_stop_request(); // OK, we’re done now
64 endtask
65
66 endclass
file: 03_tlm/05_fifo/fifo.sv

There are two new things to notice. First, the component is derived from
ovm_component, which is a base class in the OVM library that provides
essential services for components. It allows components to be connected into
the hierarchy of named components, and it provides process control for the
run task. The run task is forked at startup and can be suspended or resumed
at will.

66 Isolating Components with Channels
The other thing to notice is how put_port is declared. In our simple examples
above, we created our own pure virtual interface to connect the initiator to the
target. The OVM library supplies a collection of port and export objects,
which are wrappers around pure virtual interface references. The port and
export objects, which are themselves named components, provide a
connect() function for establishing associations between ports and exports.
This is a nicer use model compared to using assignment statements.

The consumer is not much different than the consumer in the blocking get
example.

71 class consumer extends ovm_component;
72
73 ovm_blocking_get_port#(int) get_port;
74
75 function new(string name, ovm_component p = null);
76 super.new(name,p);
77 get_port = new(“get_port”, this);
78 endfunction
79
80 task run();
81
82 int val;
83 string s;
84
85 forever
86 begin
87 get_port.get(val);
88 $sformat(s, “receiving %4d”, val);
89 ovm_report_info(“consumer”, s);
90 end
91
92 endtask
93
94 endclass
file: 03_tlm/05_fifo/fifo.sv

To connect the producer, consumer, and fifo, we use an environment. An
environment serves as the top of the hierarchy of named components, and it
orchestrates the hierarchy construction and testbench execution.

99 class env extends ovm_component;
100 producer p;
101 consumer c;
102 tlm_fifo #(int) f;
103
104 function new(string name, ovm_component parent = null);
105 super.new(name, parent);
106 endfunction

Forming a Transaction-Level Connection 67
107
108 function void build();
109 p = new(“producer”, this);
110 c = new(“consumer”, this);
111 f = new(“fifo”, this);
112 endfunction
113
114 function void connect();
115 p.put_port.connect(f.blocking_put_export);
116 c.get_port.connect(f.blocking_get_export);
117 endfunction
118
119 endclass
file: 03_tlm/05_fifo/fifo.sv

The connect() function makes the association between the ports on the
producer and consumer and the corresponding exports on the fifo. The
run() task is responsible for controlling testbench execution. In this simple
example, we let the testbench run for 100 ns and then terminate.

3.6 Forming a Transaction-Level Connection

To form a transaction-level connection, you must specify three elements: the
control flow, the data flow, and the transaction data type. Declaring a
connection as a port or export identifies the control flow—control flows from
ports to exports. That is, a port initiates activity and an export responds to it.
The interface identifies the data flow. A put interface indicates that data flows
from the initiator (port side) to the target (export side), a get interface
indicates that data flows from the target to the initiator, and a transport or
request-response interface indicates a bidirectional data flow.

We declare put_port as a port, so we know the device in which this port is
declared is an initiator. The interface type is tlm_nonblocking_put_if<>,
which is one of the put interfaces defined in the TLM library. This port is an
egress for data objects. Finally, the data type of the object being sent is trans.

In SystemVerilog using OVM, port and export declarations capture these
three elements. Here is an example:

ovm_nonblocking_put_port #(trans) put_port;

The suffix of the object type is _port, indicating this is a port object. Exports
use the suffix _export. The interface type is identified by the name between
the ovm_ prefix and the _port or _export suffix. In this case, that name is
nonblocking_put, which refers to tlm_nonblocking_put_if.

68 Summary
We have seen a producer and a consumer, each of which uses blocking tasks
to send and retrieve transactions. The blocking tasks reside in the FIFO, an
object that serves as an intermediary between the two components, otherwise
known as a channel. The channel transfers data between the two components,
and it serves as a synchronizing agent.

Putting a FIFO between two components to buffer and synchronize transfers
is a common idiom in TLM. We will see this idiom frequently in the
transaction-level testbenches we build using the OVM.

3.7 Summary

Put, get, and transport are fundamental means for synchronizing parallel
processes and for communicating transaction-level information between
those processes. These ideas are used extensively in the OVM to build
transaction-level testbenches. Section 3.5 illustrated transaction-level
communication using OVM facilities. In the next chapter, we will delve
deeper into the OVM to show how to build arbitrary hierarchies of class-
based verification components connected with transaction-level interfaces.

4

OVM Mechanics
The OVM library provides many facilities for constructing testbenches. In this
chapter we will take a first look at the essential ones that you will use in
almost all of your testbenches.

4.1 Components and Hierarchy

The primary structure for building testbench elements is the component. A
component in OVM is analogous to a module in Verilog. An OVM component
is constructed from a class, which gives it different characteristics than a
Verilog module and has different usage implications. Amongst the different
characteristics is that classes are created at run time, not at elaboration time as
modules are. Therefore, OVM is responsible for creating the component
instances and assembling them into hierarchies.

Figure 4-1 illustrates a simple hierarchy of components. Following, we will
show how to build this hierarchy using the OVM facilities for creating
components and composing them into hierarchies:

Figure 4-1 A Simple Hierarchy of Components

c1

child1 child2 child1 child2

env

c2

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_4,
© Mentor Graphics Corporation, 2009

70 Components and Hierarchy
The top-most node, env, is the root. The root is distinguished by the fact that it
has no parent. All other nodes have exactly one parent. Each node has a
name. The location in the hierarchy of each node can be identified by a unique
full_name (path), which is constructed by stringing together the names of all
the nodes between the root and the node in question, separating them with a
hierarchy separator, dot (.). For example, the path to the component that is
the second child of c2 is top.c2.child2.

A component in OVM is a class derived from ovm_component. The simplest
components are leaves, those that have no children.

57 class child extends ovm_component;
58
59 function new(string name, ovm_component parent);
60 super.new(name, parent);
61 endfunction
62
63 endclass
file: 04_OVM_mechanics/01_hierarchy/top.sv

The constructor has two parameters, the name of the component and a
pointer to its parent. The name is a simple name, not a hierarchical path. The
parent provides a place to hook our new component into the hierarchy. A
child’s fully qualified path name is created by concatenating the child’s name
to the parent’s full path name, separated by a dot (.). The OVM provides
methods for retrieving both the name and fully qualified path of a
component:

string get_name();

string get_full_name();

Subordinate components are instantiated in the build() function which is
called during the build phase (phases are explained later in this chapter).
Instantiating a component involves calling new() to allocate memory for it
and passing the appropriate arguments into the constructor. In component,
shown below, we instantiate two subordinate components, child1 and
child2.

71 class component extends ovm_component;
72
73 child child1;
74 child child2;
75
76 function new(string name, ovm_component parent);
77 super.new(name, parent);

Components and Hierarchy 71
78 endfunction
79
80 function void build();
81 child1 = new(“child1”, this);
82 child2 = new(“child2”, this);
83 endfunction
84
85 endclass
file: 04_OVM_mechanics/01_hierarchy/top.sv

Like component, env also instantiates two subordinate components, c1 and
c2. The entire hierarchy is rooted at a module called top in our design.

131 module top;
132
133 env e;
134
135 initial begin
136 e = new(“env”);
137 run_test();
138 end
139
140 endmodule
file: 04_OVM_mechanics/01_hierarchy/top.sv

The call to new() instantiates the top-level environment. run_test() starts
execution of the testbench.

In SystemVerilog, modules, interfaces, and program blocks are created during
elaboration, while classes are created after elaboration, at run time. So, to
create a hierarchy of classes, we must have an interface, module, or program
that contains an initial block that starts off the process of building a class-
based component hierarchy. Interfaces are intended to serve as a medium of
communication between two modules and are not well suited for serving as
the root of a class-based hierarchy. Either program blocks or modules can be
used to hold the root. For our simple hierarchy, it doesn’t matter. Later, when
we connect a class-based component to module-based hardware, we’ll see
that using a module is preferable to program blocks.

4.1.1 Traversing the Hierarchy

We can explore the data structures used to implement the component
hierarchy with some methods provided in ovm_component. The children of a
component are stored in an associative array. This array is not directly

72 Components and Hierarchy
accessible, but it can be accessed through a hierarchy API. This API is similar
to the built-in methods SystemVerilog provides for associative arrays.

int get_first_child(ref string name);

int get_next_child(ref string name);

ovm_component get_child(string name);

int get_num_children();

get_first_child() and get_next_child() work together to iterate over
the set of children contained in a component. get_first_child() retrieves
the name of the first child in the list. It returns the name as a reference
argument. get_next_child() returns the name of the next child in the list. It
returns 1 if there is a next child name to return or 0 if the end of the list has
been reached. get_child() transforms the name into a component reference.

Using these functions, we can traverse the component hierarchy.

73 function void depth_first(ovm_component node,
74 int unsigned level = 0);
75
76 string name;
77
78 if(node == null)
79 return;
80
81 visit(node, level);
82
83 if(node.get_first_child(name))
84 do begin
85 depth_first(node.get_child(name), level+1);
86 end while(node.get_next_child(name));
87
88 endfunction
file: 04_OVM_mechanics/utils/traverse.svh

This function will perform a depth-first traversal of the hierarchy, calling
visit() at each node. We use get_first_child() and get_next_child()
to iterate through the list of each of the children in each node. For each
iteration we call depth_first() recursively. For our small design, the result
is this:

+ env
| + env.c1
| | env.c1.child1
| | env.c1.child2

Connectivity 73
| + env.c2
| | env.c2.child1
| | env.c2.child2

The visit() function uses the node depth and whether or not it is a leaf node
to print a line for each node.

4.1.2 Singleton Top

Components that don’t have a parent (that is, the parent argument in the
constructor is null) are called orphans. In OVM, you can create as many
components without a parent as you like. However, there is no such thing as a
true orphan. Any component whose parent is null is assigned a built-in
parent called ovm_top. ovm_top is a singleton instance of ovm_root. It is the
parent of all components that don’t otherwise have a parent. In fact, env in
our previous example is a child of ovm_top. Since it has no parent, it is
automatically given ovm_top as its parent.

A singleton is a well-known, design object-oriented pattern characterized by a
private (local) or protected constructor and a static get function that returns
the same pointer no matter how many times it’s called. This means it is only
possible for one instance to exist, and that instance comes into existence
automatically when get() is called. ovm_top contains a handle to the
singleton instance of ovm_root. It is statically initialized by calling
ovm_root::get(). You can call ovm_root::get() any time, but there is no
need since ovm_top is provided as a convenience.

There are a number of beneficial consequences of having a singleton top-level
component. One is that you can reach any component from ovm_top. If you
run the hierarchy traversal algorithm on ovm_top, you will reach every
component in the system. Another consequence is that any component,
including ports, exports, and channels, that is instantiated inside a module is
reachable from ovm_top. If you want to modify the report handlers in all
components, for example, you can do so by calling one of the hierarchical
reporting functions in ovm_top. ovm_top contains all the mechanisms for
phasing, which is explained later in this chapter.

4.2 Connectivity

Components are connected to each other through TLM ports and exports.
Ports and exports provide a means for components, or more accurately,
processes in components, to synchronize and communicate with each other.
Ports and exports are objects that form a binding point to enable inter-

74 Connectivity
component communication. As discussed in the previous chapter, exports
provide functions and tasks that can be called by ports.

Figure 4-2 Connecting an Initiator to a Target

The connect method on ports and exports is used to bind the two together.

initiator_port.connect(target.export)

This method creates an association, or a binding, between the port and export
so that the port can now call tasks and functions on the export. For the
connection to be made successfully, the types of the port and export must
match. That is, the interface types must be the same, and the type of the object
being transferred in the interface must be the same.

4.2.1 Connecting across the Hierarchy

Similar to pins in an RTL design, we need to connect to TLM ports across
hierarchical boundaries. Figure 4-3 uses a simple design to illustrate how to
make these connections. This design contains a source component with two
ports that ultimately connect to two exports, one on each of two sink
components. To connect between these components, we must extend the
ports and exports to the next level of hierarchy above.

initator
(port)

target
(export)

Connectivity 75
Figure 4-3 Connecting Ports and Exports through the Hierarchy

The component source contains two ports, first_put_port and
second_put_port. These are instantiated in the build function.

65 class source extends ovm_component;
66
67 ovm_put_port #(trans_t) first_put_port;
68 ovm_put_port #(trans_t) second_put_port;
69
70 function new(string name, ovm_component parent);
71 super.new(name, parent);
72 endfunction
73
74 function void build();
75 first_put_port = new(“first_put_port”, this);
76 second_put_port = new(“second_put_port”, this);
77 endfunction
file: 04_OVM_mechanics/02_connectivity/top.sv

...

Similarly, the sink component instantiates an export and instantiates it in the
build function. The export is connected to an internal channel, fifo, from
which the component can retrieve objects during run time.

126 class sink extends ovm_component;
127
128 ovm_put_export #(trans_t) put_export;
129 local tlm_fifo #(trans_t) fifo;
130
131 function new(string name, ovm_component parent);

source

source_wrapper

sink1

sinker

sink2

env

export to export
connections

port to export
connections

port to port
connections

76 Connectivity
132 super.new(name, parent);
133 endfunction
134
135 function void build();
136 put_export = new(“put_export”, this);
137 fifo = new(“fifo”, this);
138 endfunction
139
140 function void connect();
141 put_export.connect(fifo.put_export);
142 endfunction
file: 04_OVM_mechanics/02_connectivity/top.sv

...

source_wrapper must create a connection between the internal source
component and its outer boundary. It makes this connection by instantiating
its own ports that have the same type as the type of the lower-level ports, in
this case, those that belong to source.

98 class source_wrapper extends ovm_component;
99
100 source s;
101 ovm_put_port #(trans_t) put_port1;
102 ovm_put_port #(trans_t) put_port2;
103
104 function new(string name, ovm_component parent);
105 super.new(name, parent);
106 endfunction
107
108 function void build();
109 s = new(“source”, this);
110 put_port1 = new(“put_port1”, this);
111 put_port2 = new(“put_port2”, this);
112 endfunction
113
114 function void connect();
115 s.first_put_port.connect(put_port1);
116 s.second_put_port.connect(put_port2);
117 endfunction
118
119 endclass
file: 04_OVM_mechanics/02_connectivity/top.sv

After the ports in source_wrapper are instantiated, they are then connected
to the ports in the lower-level source component via the connect method on
the ports. Making exports visible to a higher level of hierarchy is done in
much the same way as we see in sinker.

160 class sinker extends ovm_component;

Connectivity 77
161
162 ovm_put_export #(trans_t) first_put_export;
163 ovm_put_export #(trans_t) second_put_export;
164
165 sink sink1;
166 sink sink2;
167
168 function new(string name, ovm_component parent);
169 super.new(name, parent);
170 endfunction
171
172 function void build();
173 sink1 = new(“sink1”, this);
174 sink2 = new(“sink2”, this);
175 first_put_export = new(“first_put_export”, this);
176 second_put_export = new(“second_put_export”, this);
177 endfunction
178
179 function void connect();
180 first_put_export.connect(sink1.put_export);
181 second_put_export.connect(sink2.put_export);
182 endfunction
183
184 endclass
file: 04_OVM_mechanics/02_connectivity/top.sv

The two lower-level sink components and the exports are instantiated in the
usual way. They are then connected using the connect method on the exports.
Now we create a port-export connection between source_wrapper and
sinker, also using the connect function.

192 class env extends ovm_component;
193
194 sinker s;
195 source_wrapper sw;
196
197 function new(string name, ovm_component parent = null);
198 super.new(name, parent);
199 endfunction
200
201 function void build();
202 s = new(“sinker”, this);
203 sw = new(“source_wrapper”, this);
204 endfunction
205
206 function void connect();
207 sw.put_port1.connect(s.first_put_export);
208 sw.put_port2.connect(s.second_put_export);
209 endfunction
210
211 task run;

78 Connectivity
212 global_stop_request();
213 endtask
214
215 endclass
file: 04_OVM_mechanics/02_connectivity/top.sv

For new users, it can often be confusing to determine which port or export
object they should connect, and which object is the argument. You can easily
figure it out by following the control flow through the system. The general
rule is that the calling port invokes connect() using the called port or export
as the argument. Figure 4-4 shows the flow of control through our
hierarchical system.

Figure 4-4 Control Flow through Ports and Exports

Ports are the site of the invocation and exports are the site of the invoked
function or task. You can think of ports as calling exports. So, in env, we call
connect on the put_ports supplying the put_exports as arguments. For port-
to-port and export-to-export hierarchical connections, the calling order is a
little less obvious. Since the call is made on the port side, you can think of the
the lowest-level port in the hierarchy as calling interface methods in the
upper-level port. Similarly, since exports are the site of the call, you can think
of the upper-level export as calling into the lower-level export. The table
below summarizes the possible connection types:

connection type connection syntax

port-to-export port.connect(export);

port-to-port child.port.connect(port);

export-to-export export.connect(child.export);

source

source_wrapper

sink1

sinker

sink2

env

Phases 79
4.2.2 Note to AVM Users

In AVM-3.0, connections were made in a similar fashion using the connect call
on ports and exports. In addition, the export-to-export, port-to-export, and
port-to-port calls were made in different phases, export_connections(),
connect(), and import_connections(), respectively. In OVM, the order in
which the connect calls are made is no longer important; they can be made in
any order. We recommend that you put them in the connect() phase (not to
be confused with the connect() method on ports and exports).

OVM supports delayed binding, a feature where calls to connect() only
make a note that a connection is to be made. Later, just before
end_of_elaboration, the notes are reconciled and the connections made.
This enables a cleaner use model and is much more forgiving of
understandable errors where connect() calls were made in the wrong order.

4.3 Phases

Traditional Verilog modules rely on the simulator to elaborate the complete
design and kick off its execution. Since OVM components are classes, they are
instantiated and connected, and their execution is initiated outside of the
Verilog elaborator. Components come into existence by calling class
constructor new(), which allocates memory and performs initializations.
Rather than the Verilog run-time engine managing instantiation, elaboration,
and execution of class-based components, component functionality is broken
into phases, and the OVM phase controller manages their execution.

Each phase is represented in the component as a virtual method (task or
function) with a trivial default implementation. These phase callbacks are
implemented by the component developer, who supplies appropriate
functionality. The phase controller ensures that the phases are executed in the
proper order. The set of predefined phases is shown in the following table:

phase name function/
task order

new function top-down

build function top-down

connect function bottom-up

end_of_elaboration function bottom-up

80 Phases
Each phase has a specific purpose. Component builders must take care to
ensure that the functionality implemented in each phase callback is
appropriate to the phase definition.

new is not technically a phase, in that it’s not managed by the
phase controller. However, for each component, the constructor
must execute and complete in order to bring the component into
existence. Therefore, new() must run before build() or any
other subsequent phases can execute.
build is the place where new components, ports, and exports are
instantiated and configured. This is also the recommended place
for calling set_config_* and get_config_* (see Section4.4).
connect is where components, ports, and exports created in
build() are connected.
end_of_elaboration is where you can make configuration
changes, knowing that elaboration is complete. That is, you can
assume that all components are built and connected.
start_of_simulation executes just before time 0.
run is the only pre-defined task phase. All of the run tasks are
forked to run in parallel. Each run task continues until its locus of
control passes the endtask statement or it is explicitly shut down.
Later in this chapter, we will discuss how to shut down test-
benches.
extract is intended for collecting information relating to coverage
or other information about how to answer the testbench ques-
tions.
check is where any correctness checking or validation of
extracted data is done.
report is where final reports are produced.

The simple example below uses ovm_report_info() calls to illustrate the
order in which phases are executed.

start_of_simulation function bottom-up

run task bottom-up

extract function bottom-up

check function bottom-up

report function bottom-up

phase name function/
task order

Phases 81
38 class sub_component extends ovm_component;
39
40 function new(string name, ovm_component parent);
41 super.new(name, parent);
42 endfunction
43
44 function void build();
45 ovm_report_info(“build”, ““);
46 endfunction
47
48 function void connect();
49 ovm_report_info(“connect”, ““);
50 endfunction
51
52 function void end_of_elaboration();
53 ovm_report_info(“end_of_elaboration”, ““);
54 endfunction
55
56 function void start_of_simulation();
57 ovm_report_info(“start_of_simulation”, ““);
58 endfunction
59
60 task run();
61 ovm_report_info(“run”, ““);
62 endtask
63
64 function void extract();
65 ovm_report_info(“extract”, ““);
66 endfunction
67
68 function void check();
69 ovm_report_info(“check”, ““);
70 endfunction
71
72 function void report();
73 ovm_report_info(“report”, ““);
74 endfunction
75
76 endclass
file: 04_OVM_mechanics/03_phases/top.sv

In a top-level component, we create two instantiations of component, each of
which in turn instantiates two sub_components. The sub_components are
essentially the same as component; each phase callback simply prints a line
identifying the phase. When executed, you get the following result:

OVM_INFO @ 0 [RNTST] Running test ...
OVM_INFO @ 0: env.c1 [build]
OVM_INFO @ 0: env.c1.s1 [build]
OVM_INFO @ 0: env.c1.s2 [build]
OVM_INFO @ 0: env.c2 [build]

82 Phases
OVM_INFO @ 0: env.c2.s1 [build]
OVM_INFO @ 0: env.c2.s2 [build]
OVM_INFO @ 0: env.c1.s1 [connect]
OVM_INFO @ 0: env.c1.s2 [connect]
OVM_INFO @ 0: env.c1 [connect]
OVM_INFO @ 0: env.c2.s1 [connect]
OVM_INFO @ 0: env.c2.s2 [connect]
OVM_INFO @ 0: env.c2 [connect]
OVM_INFO @ 0: env.c1.s1 [end_of_elaboration]
OVM_INFO @ 0: env.c1.s2 [end_of_elaboration]
OVM_INFO @ 0: env.c1 [end_of_elaboration]
OVM_INFO @ 0: env.c2.s1 [end_of_elaboration]
OVM_INFO @ 0: env.c2.s2 [end_of_elaboration]
OVM_INFO @ 0: env.c2 [end_of_elaboration]
OVM_INFO @ 0: env.c1.s1 [start_of_simulation]
OVM_INFO @ 0: env.c1.s2 [start_of_simulation]
OVM_INFO @ 0: env.c1 [start_of_simulation]
OVM_INFO @ 0: env.c2.s1 [start_of_simulation]
OVM_INFO @ 0: env.c2.s2 [start_of_simulation]
OVM_INFO @ 0: env.c2 [start_of_simulation]
OVM_INFO @ 0: env.c2 [run]
OVM_INFO @ 0: env.c2.s2 [run]
OVM_INFO @ 0: env.c2.s1 [run]
OVM_INFO @ 0: env.c1 [run]
OVM_INFO @ 0: env.c1.s2 [run]
OVM_INFO @ 0: env.c1.s1 [run]
OVM_INFO @ 1: env.c1.s1 [extract]
OVM_INFO @ 1: env.c1.s2 [extract]
OVM_INFO @ 1: env.c1 [extract]
OVM_INFO @ 1: env.c2.s1 [extract]
OVM_INFO @ 1: env.c2.s2 [extract]
OVM_INFO @ 1: env.c2 [extract]
OVM_INFO @ 1: env.c1.s1 [check]
OVM_INFO @ 1: env.c1.s2 [check]
OVM_INFO @ 1: env.c1 [check]
OVM_INFO @ 1: env.c2.s1 [check]
OVM_INFO @ 1: env.c2.s2 [check]
OVM_INFO @ 1: env.c2 [check]
OVM_INFO @ 1: env.c1.s1 [report]
OVM_INFO @ 1: env.c1.s2 [report]
OVM_INFO @ 1: env.c1 [report]
OVM_INFO @ 1: env.c2.s1 [report]
OVM_INFO @ 1: env.c2.s2 [report]
OVM_INFO @ 1: env.c2 [report]

You can see that build() runs top-down and the rest of the phases run
bottom-up. You can also see that each phase completes in all components
before the next phase begins. Thus, in connect(), for example, you can rely
on the fact that build() has completed in all components. You will also notice
that time advances after the run phase. In our example the run() task is
trivial; it simply delays one time unit (#1).

Config 83
run_test(), mentioned previously in Section 4.1, initiates executions of the
phases. It starts running the phases in order and controls the machinery for
making sure each phase is complete before the next one begins.

4.4 Config

To increase reusability of components, it’s desirable to sprinkle them liberally
with parameters that can be externally configured. The config facility
provides a means to do just this. It is based on a database of name-value pairs
called configuration items1 that is organized hierarchically. Each component
contains a configuration table of configuration items and, since components
are arranged in a tree, each element in the database can be uniquely located
by the location of the component and the name of the configuration item.

Figure 4-5 Each Component Has a Database of Configuration Items

1. We use the term configuration item instead of parameter to avoid confusion with
other uses of the term parameter in SystemVerilog.

c1

child1 child2 child1 child2

env

c2

84 Config
The ovm_component class contains two sets of methods for putting
configuration items into the database and for retrieving them later. These are
set_config_* and get_config_*. The table below shows both sets.

The set_config_* functions place an item in the configuration database in
the current component, that is, in the component instance in which the
function is called. These functions each take three arguments, name,
field_name, and value. The argument name is a path name that represents
the scope of the components that are to accept this configuration item. name is
used in get_config_* to locate items in the configuration database.
field_name is the name of the field and must be unique within the current
configuration database. value is the value part of the name-value pair and its
type can be string, int, or ovm_object, depending on which function is
being called. In addition, set_config_object takes a clone argument to
indicate whether the object being passed in as the value should be cloned
before it is put into the configuration database.

The get_config_* functions retrieve items from the configuration database.
These functions take only two arguments, a field name and an inout variable
that contains the value of the item located. They also return a bit to indicate
whether the requested item was successfully located. The get_config_*
functions do not take a path name argument like their set_config_*
counterparts because they use the path of the current component as the point
of reference to locate configuration items. They are designed to inquire as to
the value of a configuration item for the current context, that is, the
component in which the get_config_* function is called.

The search algorithm for retrieving configuration items uses the path name of
the component requesting a configuration item and the path name inserted in

Configuration Database Access Functions

set_config_int(string name, string field_name, int value)

set_config_string(string name, string field_name,
 string value)

set_config_object(string name, string field_name,
 ovm_object object, bit clone);

get_config_int(string field_name, inout int value);

get_config_string(string field_name, inout string value);

get_config_object(string field_name,
 inout ovm_object object,
 input bit clone);

Config 85
each item. It starts by looking up the config item in the database in the top-
most component (the singleton top) by field_name. If such an item exists, it
then asks if the path name specified in the item matches the path name of the
component. If an item with the specified field_name is not located or the
path names do not match, then the search proceeds with the child component.
This process continues until a match is made or the search reaches the
component where the search originated.

The path name in each configuration item can be a regular expression. So we
use a regular expression matching algorithm to match the requested
component path name and configuration item path name. The effect is to
match hierarchical scopes.

As an example, consider the simple hierarchy in Figure 4-5. Let’s say that in
env::build() we issue two set_config_* calls:

112 function void build();
113 c1 = new(“c1”, this);
114 c2 = new(“c2”, this);
115
116 set_config_int(“c2.*”, “i”, 42);
117 set_config_int(“*”, “t”, 19);
118 endfunction
file: 04_OVM_mechanics/04_config/top.sv

This will cause two configuration items to be entered into the database in env.
Notice the asterisk (*) in the path names. Path names in calls to
set_config_* are regular expressions, and wild card characters are used to
specify multiple scopes over which the configuration item applies. For item i,
c2.* indicates that in any scope below c2 in the component hierarchy, i will
take the specified value. In this case, the specified value is 42. If you leave off
the asterisk, then the configuration item applies only to c2 and not to any of
its children.

The state of the configuration databases for each component in the hierarchy
after the set_config_* calls are made is shown in the Figure 4-6,

86 Config

Figure 4-6 Hierarchy of Configuration Databases

Now, let’s say that in top.c1.child1 we issue the call:

int i;
...
get_config_int(“i”, i)

The search asks the question What is the configuration value for i in the
hierarchical scope top.c1.child1? To answer this question, the
configuration database in env is searched first. The entry for i there says that
the value of i in scopes matching env.c2.* is 42. However, the component
from which the request was issued is in the c1 sub-hierarchy. Therefore, there
is no match, and the get_config_int() call returns a failure status. A
request in any component that is a child of c2 would successfully complete
and return a value of 42.

Below is the code for the build() function of the child components. This is
where these components look up configuration values for i and t.

60 function void build();
61

c2.* 42i

* 19t

env

env.c1 env.c2

env.c1.child1 env.c1.child2 env.c2.child1 env.c2.child2

item i not found in these scopes item i = 42 in these scopes

item t = 19 in all scopes

Config 87
62 string msg;
63
64 if(!get_config_int(“t”, t)) begin
65 $sformat(msg, “no value for t found in config
database, using default value of %0d”, t);
66 ovm_report_warning(“build”, msg);
67 end
68
69 if(!get_config_int(“i”, i)) begin
70 $sformat(msg, “no value for i found in config
database, using default value of %0d”, i);
71 ovm_report_warning(“build”, msg);
72 end
73
74 endfunction
file: 04_OVM_mechanics/04_config/top.sv

The following sample shows the printed output from running this design:

OVM_INFO @ 0 [RNTST] Running test ...
OVM_WARNING @ 0: env.c1.child1 [build] no value for i found in
config database, using default value of 91
OVM_WARNING @ 0: env.c1.child2 [build] no value for i found in
config database, using default value of 91

The request for configuration item t was successful in all contexts since the
set_config_int call established that t is available in all contexts. Two of the
requests for configuration item i succeeded, and two failed. This outcome is
because we limited the availability of i to only the components at or below
env.c2. The components at or below c1 cannot see the configuration item i
because of the way we have established the configuration database.

4.4.1 Configuration and Phasing

Now that we know the set of calls for putting items into the configuration
database and retrieving them, the next task is to effectively apply those
functions to configure components. Configuration can be used to alter the
behavior or the structure of a testbench. Typically, the behavior modes and
structure are determined when the testbench begins, so it is most useful to
establish the configuration settings in one of the early phases, such as new,
build, or connect.

From the table of phases on page 79, you can see that new and build are top-
down phases, while all the remaining phases are bottom-up. So, if you want
to set a configuration item in the database at a higher-level context to be
picked up by a lower-level one, you must call set_config_* in either the new

88 Config
or build phase. The phases are executed discretely, meaning that each phase
runs to completion before the next phase begins. You can set configuration
items in either the new or build phase and retrieve them for use in setting
behavior modes or modifying topology in the build phase. In your build
function, first make get_config_* calls to retrieve items from higher levels of
hierarchy to control the configuration of the current level. Next, add
set_config_* calls to put configuration items into the database for use by
components at lower levels of hierarchy. Finally, using the appropriate
configuration items, instantiate components. It is important to call
get_config_* first, because the information specified may affect the values
that are set for lower levels of the hierarchy.

For example, configuring topology involves setting the topology parameters
in the top-level environment and then applying those parameters in various
components that are below the top-level environment in the hierarchy. Our
example has a bus that can have any number of masters or slaves. The
number of masters and slaves is set in the top-level environment. The bus
model picks up this configuration information and uses it to construct the
bus. In the build function of the top-level environment, we instantiate the bus
model and configure it with the number of masters and slaves we want it to
have.

129 function void build();
130 set_config_int(“bus”, “masters”, 4);
131 set_config_int(“bus”, “slaves”, 8);
132 b = new(“bus”, this);
133 endfunction
file: 04_OVM_mechanics/05_config_topo/top.sv

The bus model is constructed so that the number of masters and slaves is not
fixed. Instead, those numbers come from the configuration system.

90 function void build();
91
92 int unsigned i;
93
94 if(!get_config_int(“masters”, masters)) begin
95 $sformat(msg, “\”masters\” is not in the
configuration database, using default value of %0d”, masters);
96 ovm_report_warning(“build”, msg);
97 end
98
99 for(i = 0; i < masters; i++) begin
100 $sformat(name, “master_%0d”, i);
101 m = new(name, this);
102 end
103

Factory 89
104 if(!get_config_int(“slaves”, slaves)) begin
105 $sformat(msg, “\”slaves\” is not in the configuration
database, using default value of %0d”, slaves);
106 ovm_report_warning(“build”, msg);
107 end
108
109 for(i = 0; i < slaves; i++) begin
110 $sformat(name, “slave_%0d”, i);
111 s = new(name, this);
112 end
113
114 endfunction
file: 04_OVM_mechanics/05_config_topo/top.sv

In the build function for the bus model, the design retrieves the required
configuration information using calls to get_config_int. In each case, the
return value is checked to determine whether the requested config item was
successfully retrieved. If not, a warning message issues, noting that the config
item was not found and that the default value will be used. From a best-
practices perspective, it is important to make sure that the return value is
checked and a warning is issued if it indicates failure. Without that check, the
fact that the default value is being used could go unnoticed. In some cases it
may be acceptable to use the default; in other cases it is not acceptable. The
person building the bus model may not know all the circumstances under
which the model will be used. So it is important to do everything possible to
make the model robust. Checking status returns and issuing messages as
appropriate is one way to improve the robustness of a model.

In the loop where we build the masters, the reference to each new master is
saved in the same variable, m. Each new master overwrites the previous one.
We don’t bother using an array to save all the component handles. In each
iteration of the loop, we use $sformat to generate a unique name. The
constructor, new(), calls super.new(), the constructor in the ovm_component
base class that is responsible for inserting the newly created component into
the parent’s list of children components. There is no need to explicitly save the
component handles because the parent component does that for us. The loop
that creates the slaves is organized the same way.

4.5 Factory

The structure of a testbench is determined by the organization of the
components into a hierarchy and the way these objects are connected. The
behavior of the testbench is determined by the procedural code in the phase
callbacks—build, connect, run, and so forth. There are times when it is
desirable to modify the behavior or part of the structure externally, that is, at

90 Factory
run time, without touching the testbench code. For example, to inject errors
into a system, you may want to replace the normal driver with an error driver,
one that intentionally injects errors. Instead of re-coding the environment to
use a different driver, you can use the factory to do the substitution
automatically.

The factory provides a means for substituting one object for another without
having to use your text editor to modify the testbench. Instead of creating the
object using new(), you invoke a create function in the factory. The factory
keeps a list of registered objects and, optionally, a set of overrides associated
with each one. When you create an object using the factory, the list of
overrides is consulted. If one is present, then the override object is returned.
Otherwise, the registered object is returned.

The factory is an OVM data structure. It is global in scope, and only one
instance exists (that is, it’s a singleton). It serves as a polymorphic constructor, a
single function that lets you build a variety of different objects. It provides a
means for registering objects and for specifying overrides. Objects registered
as overrides must be derived from the object they are overriding. To have a
single function return multiple objects, each of those objects must be derived
from a common base class.

An essential component of the factory is the wrapper, a class that wraps the
object we wish to register with the factory. The factory data structure is a table
of wrappers indexed by a key. The wrapper has a create() function that
delegates to the constructor of the wrapped object.

Using the factory involves three steps: registration, setting overrides, and
creation. In the first step, you register an object with the factory. In the second
step, you add an override to a registered object. In the third step, you create
an object with the factory that will return either the originally registered
object or an override, depending on whether an override was registered for
the requested object.

4.5.1 How the Factory Works

The term factory was coined for use in the software world by The Gang of
Four in their book Design Patterns: Elements of Reusable Object-Oriented
Software. In that book, they identified the pattern, which they call abstract
factory, as an interface for creating families of related objects. They identified
the pattern factory method as an interface for creating objects, but defer to
subclasses for decisions about which object to create. The OVM factory is a
combination of both of these creation patterns. It provides a means to create a

Factory 91
family of objects, and it provides a means for delegating the decision as to
exactly which object to create to the factory data structure.

The OVM factory is based around a data structure that maps requested types
to override types. Essentially, the organization is an associative array of type
handles whose key is also a type handle. When a type is registered with the
factory, its override type is itself. So by default, when you request an object of
that type, you get only that type. The factory also provides a means for
replacing the overrides with other types so you can retrieve override types
that are different than the registered type.

Figure 4-7 Factory Override Map Data Structure

The following example is a highly simplified toy factory that illustrates how
the OVM factory works. The toy factory retains the essential structure of the
OVM factory, but many details have been removed for the purposes of
keeping the illustration clear. Our toy factory is implemented in four classes,
two base classes and two derived classes, that do the real work. The two base
classes are object_base and wrapper_base. All objects registered in the
factory must be derived (ultimately) from object_base, while wrapper_base
is the base class for the parameterized wrappers. factory is a singleton that
contains the associative array of type handles that are instances of wrappers.
Finally, wrappers are derived from wrapper_base and are parameterized
classes that represent unique types.

For our toy factory, the base classes are trivial:

46 class object_base;
47 virtual function void print();
48 $display(“object_base”);

override map

requested type override type

base type derived override typefactory entry

92 Factory
49 endfunction
50 endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

59 class wrapper_base;
60 virtual function object_base create_object();
61 return null;
62 endfunction
63 endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

object_base has a virtual print() function, which we use to verify the types
of objects created by the factory. wrapper_base has the virtual function
create(), the polymorphic constructor function that is used to create new
objects.

factory is a singleton, meaning its constructor is local, and it contains a static
reference to an instance of itself. The only way to create an instance of
factory is to call factory::get(). factory contains an associative array
that maps wrapper_base handles of requested types to wrapper_base
handles of override types.

73 class factory;
74
75 static factory f;
76 wrapper_base override_map[wrapper_base];
77
78 local function new();
79 endfunction
80
81 static function factory get();
82 if(f == null)
83 f = new();
84 return f;
85 endfunction
86
87 function void register(wrapper_base w);
88 override_map[w] = w;
89 endfunction
90
91 function void set_override(wrapper_base requested_type,
92 wrapper_base override_type);
93 override_map[requested_type] = override_type;
94 endfunction
95
96 function object_base create(wrapper_base
97 requested_type);
98 object_base obj;
99 wrapper_base override_type =

Factory 93
100 override_map[requested_type];
101 obj = override_type.create_object();
102 return obj;
103 endfunction
104
105 endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

The register() method adds a new entry to the override map. Initially,
upon registration, a type has no overrides. Therefore, we set the override map
to map a type handle to itself. The set_override() method replaces the
entry in the override map with a new override type. The create() method
looks up the override for the requested type, delegates creation to the
override type, and returns the newly created object.

The wrapper class is the most interesting class in our constellation of factory-
related classes. Even though it’s quite simple, it does most of the heavy lifting.
It is the primary interface to the factory, and most of the operations you do
with the factory, you do though the wrapper interface.

118 class wrapper #(type T=object_base) extends wrapper_base;
119
120 typedef wrapper#(T) this_type;
121
122 static this_type type_handle = get_type();
123
124 local function new();
125 endfunction
126
127 function object_base create_object();
128 T t = new();
129 return t;
130 endfunction
131
132 static function T create();
133 T obj;
134 factory f = factory::get();
135 assert($cast(obj, f.create(get_type())));
136 return obj;
137 endfunction
138
139 static function this_type get_type();
140 factory f;
141 if(type_handle == null) begin
142 type_handle = new();
143 f = factory::get();
144 f.register(type_handle);
145 end
146 return type_handle;

94 Factory
147 endfunction
148
149 static function void set_override(wrapper_base
150 override_type);
151 factory f = factory::get();
152 f.set_override(type_handle, override_type);
153 endfunction
154
155 endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

All of the functions in wrapper#() are static except for the constructor and
create_object(). We can execute its static functions without concern for
whether it has been explicitly instantiated. Since each wrapper specialization
is a singleton, there can be no more than one instance of it. That means that
the static member type_handle is unique and can be used as a proxy for the
wrapped type (that is, the type supplied as a parameter that is used to
specialize the class). Since the type handle is unique and most of the methods
are static, we can treat the type handle more like a type than an object.

The type handle is initialized statically. This occurs in the following line:

static wrapper#(T) type_handle = get_type();

The function get_type() is called during static initialization, which not only
creates an instance of the wrapper, but also registers it in the factory. To
register a class with factory, you first specialize a wrapper with the type of the
object you are wrapping. Use a typedef to specialize the wrapper, as shown in
the following example:

typedef wrapper#(some_type) type_id;

This typedef creates a wrapper for type some_type, a type derived from
object_base.

Figure 4-8 illustrates how to use our toy factory with some toy classes A, B,
and C, which are derived from family_base.

Factory 95

Figure 4-8 Family of Classes for the Toy Factory

To register the classes with the factory, each of them has a typedef of the
wrapper parameterized with its own type. Below is class A. Classes B and C
are similar. Each has a typedef that specializes the wrapper.

169 class A extends family_base;
170
171 typedef wrapper#(A) type_id;
172
173 virtual function void print();
174 $display(“A”);
175 endfunction
176 endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

The following is a short program that exercises the factory.

206 function void run();
207
208 f = factory::get();
209
210 h = family_base::type_id::create();
211 h.print();
212
213
family_base::type_id::set_override(B::type_id::get_type());
214
215 h = family_base::type_id::create();
216 h.print();
217
218 endfunction
file: 04_OVM_mechanics/07_toy_factory/top.sv

The code makes heavy use of the double-colon (::) scope operator. It is used
to refer to static functions in factory and in wrapper#(). First, we get the

+print()

family_base

+print()

A

+print()

B

+print()

C

96 Factory
singleton instance of the factory data structure, then we ask to create an
instance of object family_base. family_base::type_id::get_type() is the
static function inside the wrapper specialization for family_base. We verify
that an instance of family_base is created by calling print(). Next, we set
an override of B for family_base. Again, we create an instance of
family_base. This time, since an override is now in place, instead of getting
an instance of family_base, we get an instance of B.

Our toy factory does not contain all of the functionality of the factory
implemented in OVM. The OVM factory provides a mapping from strings
(names) to type handles. It allows override chaining; whereas, our toy factory
does not. For example, if B overrides A, and C overrides B, when you ask for an
instance of A, you will get an instance of C. The OVM factory supports two
primary base classes, ovm_object and ovm_component, for registered objects,
and provides create() methods for both; whereas, the toy factory has only
one primary class, object_base.

4.5.2 The OVM Factory API

In this section, we will look more closely at the OVM factory API. It has two
parts, the type-based factory and the string-based factory. In the string-based
factory, requested types are identified by string names. In the type-based
factory, types are identified by type handles. A single type can be registered
both ways. The methods for performing the three steps (registration, setting
overrides, and creation) are slightly different in each way. First, we’ll look at
the type-based factory. Here is a component called driver that registers itself
with the type-based factory.

49 class driver extends ovm_component;
50
51 typedef ovm_component_registry#(driver) type_id;
52
53 static function type_id get_type();
54 return type_id::get();
55 endfunction
56
57 function string get_type_name();
58 return “driver”;
59 endfunction
60
61 function new(string name, ovm_component parent);
62 super.new(name, parent);
63 endfunction
64
65 endclass
file: 04_OVM_mechanics/06_factory/top.sv

Factory 97
There are two parts to registration, supplying the typedef of
ovm_component_registry#() and supplying the static function get_type().
The typedef creates a specialization of ovm_component_registry using the
component type driver as the type parameter. The
ovm_component_registry#() class has a static initializer that does the
registration with the factory data structure. So, creating the specialization
using a typedef causes the class identified by the parameter, driver in this
case, to be registered into the factory.

Setting an override is a simple matter of calling the set_override function
and supplying the override type as an argument, as shown below:

105
driver::type_id::set_type_override(error_driver::get_type());
file: 04_OVM_mechanics/06_factory/top.sv

This string looks like quite a mouthful, but it really is quite simple. Let’s
deconstruct the statement to fully understand what it means.

driver – the requested type.

driver::type_id – the type of the specialized wrapper.

driver::type_id::set_type_override – the set override function
in the specialized wrapper. This is a static function, which is why you
need the :: scope operator to refer to it.

error_driver – the override type.

error_driver::get_type() – the static function that returns the
type handle for error_driver.

To create an instance of a class using the factory, we call the create method in
the factory, as shown below:

102 d1 = driver::type_id::create(“d1”, this);
file: 04_OVM_mechanics/06_factory/top.sv

The :: syntax works the same as it does in the previous example—driver
refers to the requested type, driver::type_id refers to the type of the
specialized wrappers, and driver::type_id::create refers to the create
function in the specialized wrapper. This statement creates an instance of
driver. The difference between calling create() and calling new() is that

98 Factory
create() will consult the factory to see if there are any overrides. If so, the
create() will actually return an object of the override type.

Now let’s look at the string-based factory. The registration mechanism for the
string-based factory relies on a typedef just like the type-based factory, as
shown in the line below:

48 typedef ovm_component_registry#(driver, “driver”)
type_id;

The only difference is the addition of the second parameter of the
parameterized wrapper. It identifies the name of the type, in this case driver.
When ovm_component_registry#() is specialized with two parameters, a
type and a name, the wrapper is registered both with the type-based factory
and the string-based factory. To set an override using the type name, call the
factory API directly rather than use the wrapper API, as shown below:

106 factory.set_type_override_by_name(“driver”,
107 “error_driver”);

This statement simply says, when requested to create an object whose type
name is driver, return a type whose name is error_driver instead. The
greatest difference between using the string-based and type-based factory is
in how objects are created. In the type-based API, you access the factory
through the wrapper. In the string-based API, you invoke the factory directly.
The return type of ovm_factory::create_component_by_name() is
ovm_component. Contrast this to the return type of
ovm_component_registry#(T)::create, which is T. To access the intended
type of the returned object you will have to downcast it, as shown below:

99 assert($cast(d1,
100 factory.create_component_by_name(“driver”,
101 ““,
102 “d1”,
103 this)));

The call to factory.create_component_by_name() returns an object of type
ovm_component. The $cast downcasts the returned object to the type of d1,
which is driver. Since the type name argument to
create_component_by_name() is a string, there is no compile-time type
checking to ensure that the type of the returned object can be cast to the
required type. So it is important to check the return code of $cast to
determine whether the cast succeeded.

Factory 99
The factory string-based API includes create_object_by_name(). It is used
to create objects derived from ovm_object. You must call $cast to downcast
the created object for the same reason you call cast on components created
by the string-based factory API.

4.5.3 String-Based or Type-Based?

The type-based and string-based factory APIs each have their pros and cons,
but generally, we recommend you use the type-based factory. It is far more
robust, being removed from errors in string names.

Sometimes there is no other choice; only the string-based factory will do. An
important example of this is when you want to specify a test name from the
command line. run_test() takes an optional string argument, test_name.
Also, this task looks at the command line argument OVM_TESTNAME. If a test
name is supplied either through the command line or through the argument
list, run_test() invokes the string-based factory to instantiate the test object.
More about using command line arguments and the factory to choose a test is
in Section 7.5.

The string-based factory suffers from two major drawbacks. One, just
mentioned, is that it’s easy to mis-type a type name when you are writing
code. This can result in a broken testbench because an object is not located, or
in a subtle bug where the wrong object is instantiated. The second drawback is
that it’s difficult, if not impossible, to represent parameterized classes using
string names. For example, consider the parameterized class my_class.

class my_class #(type T=int) extends ovm_object;
typedef my_class#(T) this_t;
typedef ovm_object_registry#(this_t, “my_class#(T)”) type_id;

endclass

We’ve registered it with the string-based factory using the name
my_class#(T). Seems logical. Now consider two specializations of that class.

typedef my_class#(A) C1;
typedef my_class#(B) C2;

There is no convenient way to register these with the factory using names that
are unique to the specialization. In our example classes, C1 and C2 are each
registered using the name my_class #(T). To the factory data structure, it
looks like you are trying to register two objects with the same name, which is
an error. The remedy is to use the type-based factory API, which is not
encumbered with strings.

100 Shutting Down the Testbench
class my_class #(type T=int) extends ovm_object;
typedef my_class#(T), this_t;
typedef ovm_object_registry#(this_t) type_id;

endclass

By leaving off the second argument in the typedef of type_id, we are telling
the factory to register the object without a name, to only use the type handle
as the lookup key. Now the specializations will each have their own unique
type handle and will not be erroneously treated as the same object in the
factory.

The drawback to using the type-based factory is that there is no way to look
up an object by string. That’s because with no second argument in the
ovm_object_registry typedef, there is no name under which to file the
object. When you first use the type-based factory, it may seem a bit
disconcerting that no name is available. You will quickly discover that a string
name is not really necessary. In the cases where a name is necessary, as when
you are getting object names from user input, then the string-based factory is
available.

4.6 Shutting Down the Testbench

The easiest way to shut down an OVM testbench is to call the global function
global_stop_request(). This requests that the testbench shut down. If there
is no reason not to shut down, then the testbench will terminate.
global_stop_request() delegates to ovm_top.stop_request(). The two
forms are semantically equivalent.

What reasons would there be to not allow a shutdown? Every component has
a virtual task stop(). When you call global_stop_request(), this task is
called for each component whose member enable_stop_request is set to 1.
When all of the stop tasks have returned, then the testbench shuts down. The
stop task can be used to clean things up, tell the DUT to shut down, serve as a
shutdown objection, or anything else you’d like to do before completing the
current phase. Since it is a task, stop() can consume time. A stop() task can
disallow the shutdown by blocking. It can wait for some condition to be set or
delay a fixed time. The stop() task services the shutdown request. When
stop() returns, it allows the request to be granted.

The following example illustrates how the stop mechanism works. This
example consists of two producers sending transactions to a consumer
through a FIFO. Each producer runs independently of the other. We want to

Shutting Down the Testbench 101
make sure that both producers finish their respective jobs. When one finishes,
the other continues until it is done.

Figure 4-9 Two Producers and a Consumer

In the build() function for the top-level environment, in addition to
instantiating the various components, we configure a different number of
iterations in each producer. Since the number of iterations for each is
different, one producer will finish before the other.

127 function void build();
128 set_config_int(“producer1”, “iterations”, 5);
129 set_config_int(“producer2”, “iterations”, 9);
130 p1 = new(“producer1”, this);
131 p2 = new(“producer2”, this);
132 c = new(“consumer”, this);
133 f = new(“fifo”, this);
134 endfunction
file: 04_OVM_mechanics/09_shutdown/top.sv

We want the testbench to shut down in an orderly fashion when all the
required work is done, but we don’t want it to shut down prematurely when
the first producer completes. We use the stop mechanism to accomplish this
objective. Each producer has a stop task that waits until done becomes 1.

77 task stop(string ph_name);
78 ovm_report_info(“stop”, “initating stop”);
79 wait(done == 1);
80 ovm_report_info(“stop”, “shutting down...”);
81 endtask
file: 04_OVM_mechanics/09_shutdown/top.sv

FIFO

producer 1

consumer

producer 2

102 Shutting Down the Testbench
The ph_name argument contains the name of the phase in which stop() was
called. Even though by default there is only a task-based phase, run(), it’s
possible to arbitrarily add more task-based phases (and function-based
phases, too). The stop request mechanism works in all task-based phases, and
a call to global_stop_request() operates in the current task-based phase.
It causes stop() to be called. Since only one task named stop is possible in
each component, the ph_name argument identifies the phase in which it was
called. You can use that to modify the behavior of stop() based on the task-
based phase name.

To use the stop request mechanism, we have to enable it by setting
enable_stop_interrupt to 1. We do this in the component’s constructor.

42 function new(string name, ovm_component p = null);
43 super.new(name,p);
44 iterations = 10; // default value
45 done = 0;
46 enable_stop_interrupt = 1;
47 endfunction

The main loop of the producer is straightforward. Each iteration of the loop
generates a random integer and sends it through the put port to the
consumer. In the following sample, when the loop completes, we set done to
1, which releases the stop tasks.

66 for(int i = 0; i < iterations; i++) begin
67 randval = $random % 100;
68 $sformat(s, “sending %4d”, randval);
69 ovm_report_info(“producer”, s);
70 put_port.put(randval);
71 end
72
73 done = 1;
file: 04_OVM_mechanics/09_shutdown/top.sv

The final part is the run task in the top-level environment:

142 task run();
143 ovm_report_info(“run”, “start”);
144 global_stop_request();
145 endtask
file: 04_OVM_mechanics/09_shutdown/top.sv

Upon starting, the task immediately calls global_stop_request(), which
causes the stop() tasks to be called in the producers (because

Shutting Down the Testbench 103
enable_stop_interrupt is set to 1 in each). In turn, each producer blocks
until its respective done flag is set. When the producer with the smallest
number of iterations finishes, it triggers its local done flag and its stop task
returns. However, because there are outstanding blocked stop tasks, the
simulation continues. Only when all of the stop tasks complete will the
simulation terminate.

4.6.1 Timeout

It’s possible that a simulation can deadlock when a bug in a stop task
prevents it from returning, a blocked call never unblocks, or a forever loop
never breaks. To prevent the simulation from hanging indefinitely, OVM
provides two watchdog timeout mechanisms. One is for task phases, and the
other is for stop tasks.

ovm_root contains two variables, phase_timeout and stop_timeout. Their
type is the Verilog type time, and their values can be set by
set_global_timeout and set_global_stop_timeout. The default value for
both variables is 0, which means timeout is disabled.

When a task-based phase is executed, such as run(), and phase_timeout has
been set to a value greater than zero, then a separate watchdog process is
spawned that simply waits until the timeout expires. A fork/join_any
construct is used to spawn these tasks, so if the run tasks finish before the
timeout expires, then the timeout is ignored. On the other hand, if the timeout
expires first, then it will initiate a shutdown. The code fragment in
ovm_root::run_global_phase() that manages the execution of the run
tasks and the shutdown is this:

fork : task_based_phase

m_stop_process();

begin
 m_do_phase_all(this,m_curr_phase);
 wait fork;

end

#timeout ovm_report_error("TIMOUT",
$psprintf("Watchdog timeout of '%0t' expired.", timeout));

join_any
disable task_based_phase;

104 Connecting Testbenches to Hardware
The fork has three processes, including m_stop_process(), which manages
the stop requests; m_do_phase_all(), which causes all the run tasks to be
spawned in parallel; and the timeout.

The disable statement after the join_any causes any remaining processes,
whatever they happen to be, to be killed. So if the timeout expires first, then
both the stop process and the run tasks will be killed. If the run tasks finish
first, then the stop process and the timeout will be killed. Finally, if
global_stop_request() is called, the stop tasks are called, they all
complete, and then the stop process will finish first and the run tasks and
timeout will be killed.

4.7 Connecting Testbenches to Hardware

Ultimately, all the class-based components must communicate with RTL
hardware. SystemVerilog provides interfaces for connecting hardware objects
without having to do so pin-by-pin. Hardware, in this case, means RTL
components represented using Verilog modules. The language also provides
virtual interfaces as a means for class-based objects to connect to RTL
components. Essentially, a virtual interface is a pointer (reference) to an
interface.

Figure 4-10 Interface Connecting Testbench to Hardware

To connect class-based testbench components to hardware, you must connect
the hardware to an interface and then pass a virtual interface into the class-
based environment. Below is an example of a pin-level interface. It is a
memory interface that has an address (address), output data (wr_data),
input data (rd_data), a pin that selects the data direction (rw), request and
acknowledge pins (req and ack), a reset pin (rst), an error indicator (err),
and of course, a clock (clk).

25 interface pin_if (input clk);
26 bit [15:0] address;
27 bit [7:0] wr_data;
28 bit [7:0] rd_data;

Driver DUTSystemVerilog
Interface

Connecting Testbenches to Hardware 105
29 bit rst;
30 bit rw;
31 bit req;
32 bit ack;
33 bit err;
34
35 modport master_mp(
36 input clk,
37 input rst,
38 output address,
39 output wr_data,
40 input rd_data,
41 output req,
42 output rw,
43 input ack,
44 input err);
45
46 modport slave_mp(
47 input clk,
48 input rst,
49 input address,
50 input wr_data,
51 output rd_data,
52 input req,
53 input rw,
54 output ack,
55 output err);
56
57 modport monitor_mp(
58 input clk,
59 input rst,
60 input address,
61 input wr_data,
62 input rd_data,
63 input req,
64 input rw ,
65 input ack,
66 input err);
67 endinterface
file: 04_OVM_mechanics/10_vif/top.sv

The interface is composed of several parts. We’ll look at them individually.
The first part is the header that identifies the name of the interface, in this case
pin_if. Just below that is the pin bundle that serves as the external view of
the hardware. The rest of the interface construct contains the declaration of
three modports. Each modport is a view of the pins in the bundle. In our
example, each modport contains all the pins in the bundle but with different
signal directions. The master modport drives transactions on the bus, so
address, wr_data, req, and rw are all outputs. The device that uses this
modport will drive those pins. The rest of the signals are inputs. Slave devices

106 Connecting Testbenches to Hardware
use the slave modport, whose signal directions are set opposite the master.
Monitor devices are passive and do not drive any signals. All of their signals
are inputs. By choosing the appropriate modport for any device, we can easily
establish the direction of all the signals and guarantee consistency across all
devices connected to the bus.

In the top-level module we statically instantiate the clock generator, the
interface, and the DUT.

150 module top;
151
152 wire clk;
153
154 clkgen ck(clk);
155 pin_if pif(clk);
156 dut d(pif.slave_mp);
157
158 env e;
159
160 initial begin
161 e = new(“env”);
162 e.set_vif(pif.master_mp);
163 run_test();
164 end
165
166 endmodule
file: 04_OVM_mechanics/10_vif/top.sv

The initial block dynamically instantiates the class-based testbench
environment, passes the interface handle (otherwise known as a virtual
interface) to the newly instantiated environment, and starts running the test.
Notice that the slave modport is passed to the DUT. This is appropriate since
the DUT is a memory slave. The master modport is passed into the testbench
environment and ultimately to the driver. The environment stores the virtual
interface and passes it to any subordinate components that may need it.

108 class env extends ovm_env;
109
110 local virtual pin_if vif;
111 driver d;
112
113 function new(string name, ovm_component parent = null);
114 super.new(name, parent);
115 endfunction
116
117 function void build();
118 d = new(“driver”, this);
119 d.set_vif(vif);

Connecting Testbenches to Hardware 107
120 endfunction
121
122 task run();
123 #100;
124 global_stop_request();
125 endtask
126
127 function void set_vif(virtual pin_if _if);
128 vif = _if;
129 endfunction
130
131 endclass
file: 04_OVM_mechanics/10_vif/top.sv

Notice that the virtual interface, vif, is stored as a local variable. Just like any
other variable, making it local prevents any unauthorized access to it. Thus,
access to the interface is controlled. The set_vif() function provides the
access necessary to set the value of the local virtual interface. Like the top-
level environment, the driver also has a set_vif() function, which operates
in precisely the same way.

72 class driver extends ovm_component;
73
74 local virtual pin_if vif;
75
76 function new(string name, ovm_component parent);
77 super.new(name, parent);
78 endfunction
79
80 function void set_vif(virtual pin_if _if);
81 vif = _if;
82 endfunction
83
84 task run;
85 forever begin
86 @(posedge vif.clk);
87 ovm_report_info(“driver”, “posedge clk”);
88 //...
89 end
90 endtask
91
92 endclass
file: 04_OVM_mechanics/10_vif/top.sv

Hierarchically calling set_vif() functions works fine for small designs or
situations where you are passing the virtual interface only one or two levels
deep. In situations where you will pass the virtual interface through more
levels, or more importantly, you don’t know a priori where in the hierarchy the

108 Connecting Testbenches to Hardware
recipients of the virtual interface will reside, there is a more generalized way
to pass virtual interfaces.

For this technique, which we call the interface object technique, create a
special object to hold the interface, and pass that object to its destination using
the configuration facility. The special object must be derived from
ovm_object for it to be accepted by the configuration facility.

72 class pin_vif extends ovm_object;
73
74 virtual pin_if m_vif;
75
76 function new(virtual pin_if vif);
77 m_vif = vif;
78 endfunction
79
80 endclass
file: 04_OVM_mechanics/11_vif/top.sv

The class simply contains a virtual interface of the appropriate type and a
constructor that sets its value, the latter being a convenience and not strictly
required. In the top-level module, we create an instance of the object, assign
the virtual interface, and put it into the configuration database by calling
set_config_object().

175 module top;
176
177 wire clk;
178
179 clkgen ck(clk);
180 pin_if pif(clk);
181 dut d(pif.slave_mp);
182 pin_vif vif;
183
184 env e;
185
186 initial begin
187 vif = new(pif);
188 set_config_object(“*”, “vif”, vif, 0);
189 e = new(“env”);
190 run_test();
191 end
192
193 endmodule
file: 04_OVM_mechanics/11_vif/top.sv

Connecting Testbenches to Hardware 109
The set_vif() function and the local virtual interface are no longer needed
in the environment. Other than the top-level module, the only component
that needs to know about the interface object and the interface is the one that
needs to use it. In our example, that is the driver.

85 class driver extends ovm_component;
86
87 local virtual pin_if vif;
88
89 function new(string name, ovm_component parent);
90 super.new(name, parent);
91 endfunction
92
93 function void build();
94
95 ovm_object dummy;
96 pin_vif v;
97
98 if(!get_config_object(“vif”, dummy, 0)) begin
99 ovm_report_error(“get interface”,
100 “no virtual interface available for driver”);
101 end
102 else begin
103 if(!$cast(v, dummy)) begin
104 ovm_report_error(“interface cast”,
105 “supplied object is not the correct type”);
106 end
107 else begin
108 ovm_report_info(“get interface”,
109 “interface successfully retrieved”);
110 vif = v.m_vif;
111 end
112 end
113 endfunction
114
115 task run;
116 forever begin
117 @(posedge vif.clk);
118 ovm_report_info(“driver”, “posedge clk”);
119 //...
120 end
121 endtask
122
123 endclass
file: 04_OVM_mechanics/11_vif/top.sv

While we are able to get rid of the local virtual interfaces and the set_vif
functions, some extra code is required in build() to retrieve the interface
object from the configuration database and make sure that it is the correct
type. We retrieve a dummy object from the configuration database using

110 Tests and Testbenches
get_config_object(). Then, if the object exists, we cast it to the type of the
interface object. If the cast succeeds, then we can reach into the interface
object to get the virtual interface and assign it to our local virtual interface.

The interface object technique of assigning virtual interfaces to components is
slightly more verbose. It requires you to create an object and put it in the
configuration database. The recipient has to retrieve the object and check to
make sure that the object does indeed exist and is of the correct type.
However, it is much more general and secure than hierarchical calls to
set_vif(). For one thing, only the components that care about the interface
must go through the extra work of retrieving the interface object. No other
components have to do anything. Whereas, when using hierarchical calls to
set_vif(), all components between the top level and the ones that will use
the interface must store a local copy of the virtual interface and forward it
downwards. Any break in the chain means the recipient will not have an
interface to use.

For designs that are small, have shallow hierarchies, or only a single virtual
interface to worry about, the trade-offs are not so obvious. You can
successfully argue that the set_vif() technique is equivalent to or even
easier than the interface object technique. However, when your design has
multiple virtual interfaces and deep hierarchies, the interface object technique
is clearly superior. As we will see in later chapters, using the configuration
facility greatly increases the reusability of your components.

4.8 Tests and Testbenches

Through the proper use of configuration, the factory, and the phased build
process, you can create a verification testbench that allows you to randomize
more than just the generated stimulus. For example, if a testbench is written
to allow the number of drivers on a bus to be configurable, then the same
testbench can be reused across multiple tests, each of which might specify a
different (possibly random) number of drivers. As you can see, the flexibility
of OVM allows you to run each of these different tests without having to
modify the testbench itself.

The OVM also provides an explicit ovm_test class as a container for tests.
Typically, the top-level module will instantiate an ovm_test, which in turn
configures and instantiates the testbench. Additional tests can then be written
as extensions of the base test that include new configuration and factory
directives, making the tests themselves relatively short, well-defined, and
easy to maintain. In actuality, the ovm_test is simply another extension of
ovm_component. Since tests and testbenches are simply components, they too
can be created and overridden via the factory.

Reporting 111
Figure 4-11 Layering Tests and Testbenches

The UML diagram above illustrates the relationship between the test and the
environment. Tests and environments (env) are both components. A test
contains an environment. The environment contains the top-level testbench
components and their connectivity. For a particular environment, you may
wish to have multiple tests. Similarly, for a particular test, you may wish to
exercise it on variations of your environment. The factory lets you swap tests,
environments, or both.

4.9 Reporting

OVM provides a rich set of classes and functions for generating and filtering
messages. The OVM reporting facility contains three kinds of functionality:

Displaying messages in a uniform way to various destinations
Filtering messages
Altering control flow as a result of a message being printed

4.9.1 Basic Messaging

ovm_component is a report object, meaning it inherits from
ovm_report_object. ovm_report_object, derived from ovm_object, is a

env

env1 env2

test_base

test1 test2

1 1

ovm_test ovm_env

ovm_component

112 Reporting
base class that contains all the functions you will use to issue and control
messages. The four primary functions for issuing messages are:

function void ovm_report_info(string id,
 string message,
 int verbosity = OVM_MEDIUM,
 string filename = "",
 int line = 0);

function void ovm_report_warning(string id,
 string message,
 int verbosity = OVM_MEDIUM,
 string filename = "",
 int line = 0);

function void ovm_report_error(string id,
 string message,
 int verbosity = LOW,
 string filename = "",
 int line = 0);

function void ovm_report_fatal(string id,
 string message,
 int verbosity = OVM_NONE,
 string filename = "",
 int line = 0);

Each of these four functions issues a message that has several components:
severity, verbosity level, identifier, message, filename, and line number.

Severity. The severity of the message can be OVM_INFO, OVM_WARNING,
OVM_ERROR, or OVM_FATAL. The choice of severity changes the final text that is
printed to include an indication of the severity. It also affects how the message
is processed. For example, a call to ovm_report_fatal terminates the
testbench. Other ways in which severity affects message processing are
discussed in Section 4.9.2.

Identifier. The identifier of a message is an arbitrary string that is used to
identify the string. The identifier is printed as part of the message text, and it
also affects how messages are processed.

Message. The message is the body of the message text.

Verbosity. The verbosity level of a message is an arbitrary number that is
relative to the current setting of the verbosity threshold. Messages whose
verbosity level is at or below the threshold will be printed, and those above
will be ignored. This is a way to filter messages. You can make your testbench
more verbose by raising the threshold or less verbose by lowering the

Reporting 113
threshold. The function for changing the verbosity threshold is
set_report_verbosity_level(int verbosity).

Filename and line number. These are optional arguments whose role is to
provide file and line number information about where the message occurred.

4.9.2 Message Actions

Associated with each message is an action that determines exactly how it is
processed. The action is a bit vector with each bit representing one possible
action. You can specify multiple actions by turning on one or more bits in the
vector. So you don’t have to remember which bit is which, OVM has an action
enum that you can use to specify actions. The following table describes the
possible actions:

quit_count and max_quit_count are stored in a global location. You can
change max_quit_count with the following function:

set_max_quit_count(int q);

A combination of a message’s severity and identifier determine the action it
takes. The message handler keeps a set of tables that define actions and file
destinations for messages by identifier and severity. (We’ll see shortly how
those tables are set up.) First, the message handler looks to see if there is an
action specified for the combination of identifier and severity for the message.
If there is none, then the message handler looks to see if there is an action
specified just for the identifier. If it finds none, then it looks for actions by

Action Definition

NO_ACTION Do not execute an action.

OVM_DISPLAY Display the message on the standard output device.

OVM_LOG Send the message to a file.

OVM_COUNT Increment quit_count. When quit_count reaches
a predetermined threshold, terminate the testbench.

OVM_EXIT Terminate the testbench immediately.

OVM_CALL_HOOK Call the appropriate hook function.

OVM_STOP Call $stop after the message has been processed.

114 Reporting
severity. The OVM message facility guarantees that there is always an action
for each severity. The default actions are shown in the following table.

The only default actions are those determined by severity, as shown in the
table above. You must set any other action by identifier or the combination of
identifier and severity with functions designed for just that purpose.

4.9.3 Message Files

To send messages to a file, you must first open the file and change the
appropriate message actions to OVM_LOG. A handy place to do this is in the
build() method of a component, for example:

class component extends ovm_component;

FILE f;

function void build();
f = $fopen("logfile", "w");
set_report_default_file(f);
set_report_severity_action(OVM_INFO, OVM_LOG);
set_report_severity_action(OVM_WARNING, OVM_LOG);
set_report_severity_action(OVM_ERROR, OVM_LOG);
set_report_severity_action(OVM_FATAL, OVM_LOG | OVM_EXIT);

endfunction

Later, when the testbench terminates, you can close the file:

function void report();
$fclose(f);

endfunction

4.9.4 Message Handlers

Each report object has a report handler (ovm_report_handler) associated
with it. The report handler is not directly accessible by the user, although it
contains local state data for that report object. The report object contains no

Severity Default Action

OVM_INFO OVM_DISPLAY

OVM_WARNING OVM_DISPLAY

OVM_ERROR OVM_DISPLAY | OVM_COUNT

OVM_FATAL OVM_DISPLAY | OVM_EXIT

Reporting 115
reporting data itself, only the reporting interface, that is, the functions whose
work is delegated to the handler. To illustrate this concept, let’s look at the
hierarchical connectivity example that we discussed in Section 4.2.1. It, like all
hierarchies of components, has a report handler associated with each
component.

Figure 4-12 Hierarchical Design with Report Handlers

To change reporting characteristics for an individual component, you need to
change only its report handler. For example, issuing this call in the
component sink2:

set_report_id_action(“fsm”, OVM_LOG);

causes all the messages whose identifier is “fsm” to be logged to a file. Since
this call was made within sink2, it only affects messages issued from sink2.
Messages issued from any other component in this testbench are not affected,
even if they also have the “fsm” identifier. To make a similar change on an
entire sub-hierarchy, you can issue the same call on each component, or you
can call the hierarchical equivalent of the set_report_id_action() method.
In this case, you would call:

set_report_id_action_hier(“fsm”, LOG);

env

source_wrapper sinker

source sink1 sink2

rh

rhrh

rh rh rh

116 Reporting
If you make this call in sinker, you will affect sinker and all of the
components in the hierarchy beneath it. In the figure below, the shaded report
handlers are those affected.

Figure 4-13 Affect of a Call to set_report_id_action_hier

The following table identifies all the methods for changing report actions and
files and their hierarchical equivalents.

4.9.5 Altering the Flow of Control

Most of the time when you issue a report, the report is displayed or sent to a
file, and then control resumes at the next sequential statement. There are
occasions when you’ll want to alter the flow of control based on a message
that is issued. The most obvious case is terminating the testbench. The EXIT
action terminates the testbench immediately after the message is sent to its

Local Method Hierarchical Method

set_report_verbosity_level set_report_verbosity_level_hier

set_report_default_file set_report_default_file_hier

set_report_severity_action set_report_severity_action_hier

set_report_id_action set_report_id_action_hier

set_report_severity_id_action set_report_severity_id_action_hier

set_report_severity_file set_report_severity_file_hier

set_report_id_file set_report_id_file_hier

set_report_severity_id_file set_report_severity_id_file_hier

env

source_wrapper sinker

source sink1 sink2

rh

rhrh

rh rh rh

Reporting 117
final destination. The action COUNT increments quit_count, and the testbench
terminates when quit_count reaches max_quit_count. Typically, you will
use these actions to do things like prevent an errant program from looping
indefinitely in an error state, or prevent cascading error messages from
obfuscating the source of an error.

function void build();
set_report_max_quit_count(10);
set_report_severity_action(OVM_ERROR,

 OVM_DISPLAY | OVM_LOG | OVM_COUNT);
endfunction

The example build() function above sets max_quit_count to 10 and
instructs the report handler so that each time an error is issued (that is,
ovm_report_error() is called) the message displays on the screen, goes to a
log file, and increments quit_count. The tenth time an error is issued, the
testbench terminates.

Another way to alter the flow of control when a report is issued is through
report hooks. The report object provides this set of virtual functions. They
provide a place where you can gain control when any report is issued or a
report of a specific severity is issued to do additional filtering, counting,
sanity checking, and so forth. The OVM report object provides five report
hooks, one for each severity, and a catch-all hook that is called no matter what
the severity of the report.

virtual function bit report_hook(string id,
 string message,
 int verbosity,
 string filename,
 int line);

virtual function bit report_message_hook(string id,
 string message,
 int verbosity,
 string filename,
 int line);

virtual function bit report_warning_hook(string id,
 string message,
 int verbosity,
 string filename,
 int line);

virtual function bit report_error_hook(string id,
 string message,
 int verbosity,
 string filename,
 int line);

118 Reporting
virtual function bit report_fatal_hook(string id,
 string message,
 int verbosity,
 string filename,
 int line);

The first thing you might notice is that these functions take exactly the same
argument as the ovm_report_* functions. The reason is that all of the
arguments passed to ovm_report_* are passed to the hooks as well.

The other thing to notice is that each of these functions returns a value, a
single bit. Processing continues only if both hooks return 1. The default
hooks, the hooks in the base class that are called when you don’t explicitly
supply one, always return 1. If the return value is 0, then processing
terminates, and it is as though the report was never issued. Through the
return code of the hooks, you can do fine-grained filtering of messages. As an
example of how you might use return codes, let’s say that you don’t want to
see messages from your testbench during initialization, which takes 250
microseconds. After initialization is complete, you want to see all messages.

function bit report_hook(input string id,
 input string mess,
 input verbosity,
 string filename,
 int line);

return ($time > 250000);
endfunction

The catch-all hook is called first, and then the severity-specific hook is called.

To enable hooks, you must turn them on by setting the action to
OVM_CALL_HOOK. A convenient place to do that is in the build() function:

class component extends ovm_component;

FILE f;

function void build();
f = $fopen("logfile", "w");
set_report_default_file(f);
set_report_severity_action(OVM_INFO,

OVM_LOG | OVM_CALL_HOOK);
set_report_severity_action(OVM_WARNING,

OVM_LOG | OVM_CALL_HOOK);
set_report_severity_action(OVM_ERROR,

OVM_LOG | OVM_CALL_HOOK);
set_report_severity_action(OVM_FATAL,

 OVM_LOG | EXIT | OVM_CALL_HOOK);

Summary 119
endfunction

Hooks are run in the component in which they are implemented. Just as each
component has its own set of methods, they also have their own hooks. If you
want to run the same hook in different components, you’ll have to implement
it in each component. A straightforward way to do this is to create your own
component base class that inherits from ovm_component and that has your
hook implementations.

4.10 Summary

An understanding of the concepts discussed in this chapter enables you to
construct the essential elements of a testbench using the OVM. You can create
arbitrary hierarchies of class-based components, connect them, configure
them, run them, and shut them down. Subsequent chapters build upon these
concepts with additional ones, with explanations along the way for creating
highly reusable testbench structures.

120 Summary

5

Testbench Fundamentals
To answer does-it-work questions, we need to stimulate the design with
known stimulus and determine if the design responds as intended. That is,
we need to control and observe the DUT.

5.1 Drivers and Monitors

Two of the most fundamental objects in testbenches are drivers and monitors.
A driver converts a stream of transactions into activity on a pin-level
interface. A monitor does the opposite; it converts activity on a pin-level
interface into a stream of transactions. Drivers are used to control the DUT by
applying stimulus, and monitors are used to observe the responses.

To understand how to build and use drivers and monitors, we will start with
a transaction-level example that illustrates a stimulus generator (memory
master) connected with a memory slave. The memory slave is a stand-in for a
driver. Whereas a true driver has a pin-level connection, the memory slave
does not. What the memory slave and driver have in common is that their
transaction interfaces and their internal architecture are the same. After
building an understanding of the transaction-level example, we will expand it
to use pin-level communication.

The memory master generates a stream of request transactions and sends
them through the transport channel to the memory slave. The slave processes
each request and generates responses, which it sends back to the master
through the transport channel.

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_5,
© Mentor Graphics Corporation, 2009

122 Drivers and Monitors

Figure 5-1 Transaction-Level Memory Master and Slave

First, let’s look at the plumbing of this example, that is, the connectivity and
data flow through the components. The transport channel is composed of two
opposing FIFOs, one for requests and one for responses, and a transport
interface. The memory master connects to the transport interface on the
channel. As you might recall from Section 3.4.3, the transport interface allows
the memory master to guarantee that requests and responses are
synchronized. The slave interface, as the name suggests, is for devices that
must respond to requests; whereas, the transport interface is for devices that
generate requests.

Figure 5-2 Request and Response Flow between Master and Slave

The memory master uses its port to repeatedly call transport(), which
causes a request to be posted in the request FIFO of the transport channel.
transport() also blocks until a response is available. The slave calls get(),
which retrieves a request, then processes it, generates a response, and posts
the response back to the response FIFO using put(). Finally, transport(),
which has been waiting for a response, can now return the response to the
memory master.

MEM
MASTER

MEM
SLAVE

FIFO

FIFO

MEM MASTER MEM SLAVErequests

responses

transport channel slave port

transport port

Drivers and Monitors 123
The main loop of the master contains a self-checking test. It generates a
number of memory writes and saves those writes into a reference queue.
Then it reads back from all the memory locations just written and compares
each read value with the entry in the queue.

62 for(int i = 0; i < bursts; i++) begin
63 req = new();
64
65 addr = $random & addr_mask;
66 size = ($random & ‘h1f) +1; // size > 0 && size <= 32
67
68 // write loop
69 for(j = 0; j < size; j++) begin
70 req.set_addr(addr);
71 data = $random & data_mask;
72 refq.push_back(data);
73 req.set_wdata(data);
74 req.set_write();
75 req.set_slave_id(0);
76 transport_port.transport(req,rsp);
77 // ignore response
78 addr++;
79 #0;
80 end
81
82 // read loop
83 addr -= size;
84 for(j = 0; j < size; j++) begin
85 req.set_addr(addr);
86 req.set_wdata(0);
87 req.set_read();
88 req.set_slave_id(0);
89 transport_port.transport(req,rsp);
90 data = rsp.get_rdata();
91 refd = refq.pop_front();
92 if(data != refd) begin
93 $sformat(s, “data mismatch: %x != %x”,
94 data, refd);
95 ovm_report_error(“compare”, s);
96 end
97 addr++;
98 #0;
99 end
100 end

The main loop contains two sub-loops, a write loop and a read loop. The
write loop generates a random number of writes. For each write, it generates
a random data value that is both stored in the reference queue (refq) and put
into the request object. transport() sends the request to the request channel
and blocks until a response is available. The read loop reads back the same

124 Drivers and Monitors
addresses in the same order and compares each value read with the value in
the reference queue. If there is a mismatch, then an error is emitted.

The main loop of the memory slave retrieves each request, decodes it,
processes it, and generates a response.

50 forever begin
51 slave_port.get(req);
52 assert($cast(rsp, req.clone()));
53
54 addr = req.get_addr();
55 if(req.is_read()) begin
56 data = m.read(addr);
57 rsp.set_rdata(data);
58 end
59 else begin
60 data = req.get_wdata();
61 m.write(addr, data);
62 end
63
64 slave_port.put(rsp);
65 #1;
66 end
67 endtask

Note that the slave uses a forever loop; whereas, the master has a bounded
loop. The slave has no way of knowing up front how many requests it will
process. It’s the master that determines how many requests will be processed.

To send a response, we create the response object by making an exact copy of
the request using clone() and then replace response fields as appropriate.
This course of action is a shortcut when the request and response objects have
identical types, which is the case here.

The simple producer-consumer arrangement of stimulus generator and
driver is a common idiom in OVM testbenches. The simplest arrangement is a
feed-forward stimulus generator that sends transactions to drive packets on a
bus. More complex arrangements involve things like multiple sequences
running in parallel through a sequencer to a driver. In all these cases the idea
is the same: one or more testbench elements generate transactions and
possibly retrieve responses connected to a driver. The driver converts the
transaction stream to pin-level activity.

Introducing the HFPB Protocol 125
5.2 Introducing the HFPB Protocol

Throughout this chapter and the next several chapters, we illustrate testbench
construction using a simple, non-pipelined bus protocol called the HFPB
protocol. HFPB is an acronym that stands for Harry Foster peripheral bus,
which is named after Harry Foster, who first suggested it. Harry drew his
inspiration for the protocol from ARM’s AMBA APB protocol.

The table below provides a summary of the bus signals for our simple non-
pipelined bus example.

These signals are connected between master and slave, as illustrated in the
following diagram.

Name Description

clk All bus transfers occur on the rising edge of clk.

rst An active high bus reset.

sel These signals indicate that a slave has been selected.
Each slave has its own select (for example, sel[0] for
slave 0). However, for our simple example, we assume a
single slave.

en Strobe for active phase of bus.

write When high, write access.
When low, read access.

addr[7:0] Address bus.

rdata[7:0] Read data bus driven when write is low.

wdata[7:0] Write data bus driven when write is high.

126 Introducing the HFPB Protocol
Figure 5-3 HFPB Pin Connections

The protocol operates in three states, INACTIVE, START, and ACTIVE. The
relationships and transitions between the states are illustrated in Figure 5-4.

Figure 5-4 HFPB State Machine

After a reset (that is, rst==1’b1), the bus is initialized to its default INACTIVE
state, which means both sel and en are de-asserted. To initiate a transfer, the

MASTER SLAVE

clk

rst

sel

en

write

addr

rdata

wdata

setup

INACTIVE

sel == 0
en == 0

START

sel == 1
en == 0

ACTIVE

sel == 1
en == 1

setup

transfer

no transfer

no transfer

Introducing the HFPB Protocol 127
bus moves into the START state, where the master asserts a slave select signal,
sel, selecting a single slave component.

The bus only remains in the START state for one clock cycle and will then
move to the ACTIVE state on the next rising edge of the clock. The ACTIVE
state only lasts a single clock cycle for the data transfer. Then, the bus will
move back to the START state if another transfer is required, which is
indicated when the selection signal remains asserted. However, if no
additional transfers are required, the bus moves back to the INACTIVE state
when the master de-asserts the slave’s select and bus enable signals.

The address (addr[7:0]), write control (write), and transfer enable (en)
signals are required to remain stable during the transition from the START to
ACTIVE state. However, it is not a requirement that these signals remain
stable during the transition from the ACTIVE state back to the START states.

5.2.1 HFPB Write Operation

Figure 5-5 illustrates a write operation for the HFPB bus protocol involving a
bus master and a single slave.

Figure 5-5 HFPB Write Transaction

At clock one, since both the slave select (sel) and bus enable (en) signals are
de-asserted, our bus is in an INACTIVE state, as we previously defined in our
conceptual state machine (see Figure 5-4) and illustrated in Figure 5-5. The
state variable in Figure 5-4 is actually a conceptual state of the bus, not a
physical state implemented in the design.

The first clock of the transfer is called the START cycle, which the master
initiates by asserting one of the slave select lines. For our example, the master

write

sel

en

addr

wdata

state

 ADDR 1

INACTIVE ACTIVESTART INACTIVE

DATA 1

0 1 2 3 4

128 Introducing the HFPB Protocol
asserts sel, and this is detected by the rising edge of clock two. During the
START cycle, the master places a valid address on the bus and in the next
cycle, places valid data on the bus. This data will be written to the currently
selected slave component.

The data transfer (referred to as the ACTIVE cycle) actually occurs when the
master asserts the bus enable signal. In our case, it is detected on the rising
edge of clock three. The address, data, and control signals all remain valid
throughout the ACTIVE cycle.

When the ACTIVE cycle completes, the bus enable signal (en) is de-asserted
by the bus master, and thus completes the current single-cycle write
operation. When the master has finished transferring all data to the slave, the
master de-asserts the slave select signal (for example, sel). Otherwise, the
slave select signal remains asserted, and the bus returns to the START cycle to
initiate another write operation. It is not necessary for the address data values
to remain valid during the transition from the ACTIVE cycle back to the
START cycle.

Figure 5-6 HFPB Read Transaction

5.2.2 Basic Read Operation

Figure 5-6 illustrates an HFPB read operation involving a bus master and
slave zero. Just like the write operation, since both the slave select (sel) and
bus enable (en) signals are de-asserted at clock one, our bus is in an
INACTIVE state, as we previously defined in our conceptual state machine
(see Figure 5-4). The timing of the address, write, select, and enable signals
are all the same for the read operation as they were for the write operation. In
the case of a read, the slave must place the data on the bus for the master to

write

sel

en

addr

rdata

state

 ADDR 1

INACTIVE ACTIVESTART INACTIVE

DATA 1

0 1 2 3 4

An RTL Memory Slave 129
access during the ACTIVE cycle, which Figure 5-6 illustrates at clock three.
Like the write operation, back-to-back read operations are permitted from a
previously selected slave. However, the bus must always return to the START
cycle after the completion of each ACTIVE cycle.

5.3 An RTL Memory Slave

Now, we’ll expand upon our transaction-level memory master and slave
example by replacing the slave with a driver and a pin-level slave. We’ll also
introduce a monitor.

Figure 5-7 Memory Master with Driver, Monitor, and Pin-Level Slave

The first thing to notice about our expanded example is that the memory
master, memory slave, and transport channel are identical to the ones from
the previous example. This is an application of reuse, applying components
unchanged in multiple situations.

We’ve inserted a pin-level driver and slave between the transaction-level
master and slave. We’ve also added a monitor. The monitor is the
complement of the driver; whereas, the role of the driver is to convert a
stream of transactions into activity on the bus, the role of the monitor is to
monitor the activity on the bus and convert it to a stream of transactions.

Like the transaction-level memory slave, the main loop of the driver is a
forever loop. However, since the driver controls the bus, it is driven by the
clock. The skeleton of the driver is based around a finite state machine coded
as a case statement.

forever begin
@(posedge m_bus_if.master.clk)

mem
master

HFPB
driver

HFPB
slave

HFPB
monitor

requests

responses

mem
slave

Clock control

Finite state machine

130 An RTL Memory Slave
...

case(m_state)

INACTIVE : begin
...

 end

START : begin
...

 end

ACTIVE : begin
...

 end

endcase

end // forever

The three-state state machine is represented using a case statement with each
case containing the actions for that state. The first thing that the driver does in
the INACTIVE state is get a new transaction.

83 if(!slave_port.try_get(m_req)) begin
84 m_bus_if.sel <= 0;
85 m_state = INACTIVE;
86 continue;
87 end
file: 05_testbench_fundamentals/basic_hfpb/hfpb_driver.svh

Note that we use try_get() instead of get(). try_get() is the nonblocking
variant of get(). It is a function, and therefore, it cannot consume time. If
there is nothing in the FIFO to retrieve at the time it’s called, try_get()
returns with a status of 0. If there is something in the FIFO, it will return it
along with a status code of 1. The reason we use try_get() instead of get()
is because the bus is driven by the clock, and we want to ensure that remains
the case. We don’t want the act of getting a new request to block the bus and
possibly cause other devices connected to the bus to function improperly. If
try_get() does not find an item in the FIFO to retrieve then it executes an
idle cycle.

In the ACTIVE state, once the transaction completes, we send a response back
using try_put(). We use try_put(), which is also nonblocking, for the same
reason we use try_get()—so we don’t block the bus.

140 if(!slave_port.try_put(m_rsp))

An RTL Memory Slave 131
141 begin
142 ovm_report_error (“MASTER”,
143 “put response failed”);
144 end
file: 05_testbench_fundamentals/basic_hfpb/hfpb_driver.svh

The skeleton of the HFPB slave is the same as for the driver. This makes sense
when you consider that they are both part of the same bus protocol. The
actions at each state in the state machine are a bit different. Instead of driving
new transactions onto the bus, as the master does, the slave responds to
transactions. Once it sees a read or write transaction, it takes information
from the bus and forwards it to the transaction-level memory slave. The main
work done by the slave occurs in the START state.

79 START : begin
80
81 m_req = new();
82
83 if (m_bus_if.write)
84 m_req.set_write();
85 else
86 m_req.set_read();
87 m_req.set_wdata(m_bus_if.wdata);
88 m_req.set_addr(m_bus_if.addr);
89 m_req.set_slave_id(id);
90
91 m_transport_channel.transport(m_req, m_rsp);
92
93 if(!m_bus_if.write)
94 m_bus_if.rdata = m_rsp.get_rdata();
95
96 end // START
file: 05_testbench_fundamentals/basic_hfpb/hfpb_slave.svh

It’s in the START state of the HFPB protocol that a transaction begins. The
action of the HFPB (pin-level) slave is to retrieve information from the pins,
determine what kind of transaction is in process, create a request object, and
forward it to the transaction-level slave. The transaction-level slave does the
actual processing of the request and returns a response back to the pin-level
slave. The pin-level slave then puts the response on the bus once the
transaction is complete. For our protocol, only reads cause the slave to change
the bus pins by placing the data read from the transaction-level slave onto the
bus.

132 Monitors and Analysis Ports
5.4 Monitors and Analysis Ports

To answer the does-it-work and are-we-done questions, you must observe the
DUT’s behavior. You need to extract information concerning the behavior of
the DUT and pass it to analysis devices dedicated to answering the relevant
questions. The primary way to do this in OVM is to use analysis ports.

Analysis ports form the boundary between the operational domain and the
analysis domain in a testbench. The analysis domain is the collection of
components in the testbench responsible for analyzing the behavior observed
by a monitor. Analysis components receive their input from analysis ports. A
monitor sends transactions through an analysis port to an analysis
component.

Analysis ports and analysis components together are an implementation of
the observer pattern, a well-known, object-oriented pattern. In this pattern, the
publisher provides data and the subscribers consume data. Like a magazine
subscription, each subscriber must subscribe to the publisher before it can
receive data. Data is transferred to the subscribers only when the publisher
publishes something. Also like a magazine subscription, each subscriber
receives a handle to the data from the publisher. The following diagram
shows the organization of elements in an analysis port:

Figure 5-8 Analysis Port Organization

Before the test begins, each subscriber must register itself with the publisher.
The publisher maintains a list of subscribers. At some time during its
operation, the device that contains the analysis port, such as a monitor, calls
write(), and passes in a transaction object. The analysis port forwards the
write call to each subscriber, and passes a copy of the transaction object to the
subscriber.

Analysis components (subscribers) connect to analysis ports through the
analysis interface. The analysis interface contains the single function write().

publisher

subscriber[2] subscriber[1] subscriber[0]

monitor

sub[0]

sub[1]
sub[2]

analysis_if

write(tr)

analysis_if

write(tr)

analysis_if

write(tr)

write(tr)

analysis_port

Monitors and Analysis Ports 133
write() is a function in SystemVerilog (not a task); therefore, it never blocks.
Imagine what can happen if write() were a blocking task instead. In that
case, it could interfere with the operation of the monitor. Since subscribers
must receive data in the same delta cycle that the write() call is made,
write() must be nonblocking.

Some analysis components may deliver more than one transaction through an
analysis port in a single delta cycle. write() must return immediately, but the
subscriber may do anything, including consume time. The consequence is
that data can be lost if a subscriber is not prepared to deal with multiple
transactions in one delta cycle. In this case, you can use an analysis FIFO to
serve as a FIFO buffer between the analysis port and the analysis component.
An analysis FIFO is an unbounded tlm_fifo with an analysis interface, that
is, write(). Since the analysis_fifo is unbounded, write() will always be
successful. The analysis component then, instead of having an analysis
interface, connects to the analysis FIFO in the same way any component
connects to a FIFO. It uses get() or try_get() to retrieve transactions. Of
course, you can also design an analysis component that includes an analysis
FIFO internally and makes the FIFO’s analysis export visible as its own.

The monitor for our HFPB protocol uses the same skeleton as the driver and
the slave. Through the exercise of the state machine, it is able to recognize bus
transactions. As each transaction is recognized, it is sent to the analysis port
using the write() call.

55 forever begin
56 @(posedge m_bus_if.clk);
57
58 if (m_bus_if.rst) continue;
59
60 state = state_t’({ (m_bus_if.sel != 0),
61 m_bus_if.en });
62 case(state)
63
64 INACTIVE : begin
65 end
66
67 START : begin
68 id = 0;
69 for(id = 0; id < 8; id++)
70 if(m_bus_if.sel[id])
71 break;
72 if(id >= 8)
73 id = 7;
74
75 m_trans = new();
76
77 m_trans.set_addr(m_bus_if.addr);

134 Summary
78 m_trans.set_wdata(m_bus_if.wdata);
79 m_trans.set_slave_id(id);
80
81 if (!m_bus_if.write)
82 continue;
83
84 m_trans.set_write();
85 analysis_port.write(m_trans);
86 ovm_report_info(“MONITOR”, m_trans.do_sprint());
87
88 end
89
90 ACTIVE : begin
91 if (m_bus_if.write)
92 continue;
93
94 m_trans.set_read();
95 m_trans.set_rdata(m_bus_if.rdata);
96 analysis_port.write(m_trans);
97 ovm_report_info(“MONITOR”, m_trans.do_sprint());
98 end
99
100 endcase
101
102 end
file: 05_testbench_fundamentals/basic_hfpb/hfpb_monitor.svh

Any subscriber connected to the analysis port will receive the transaction and
use it for its purposes.

5.5 Summary

We’ve reviewed the fundamental components of testbenches, drivers and
monitors. Drivers and monitors are complementary—drivers convert
transaction streams to pin wiggles, and monitors convert pin wiggles into
transaction streams. Stimulus generators sending transactions to a driver and
monitors observing bus activity and converting it to transactions are core
idioms in testbench construction. In the next chapter, we’ll look at how to
apply these idioms to build complete testbenches.

6

Reuse

Building a testbench—designing, coding, debugging, and testing drivers,
monitors, and other testbench components—can be quite time-consuming.
An obvious place to improve verification productivity is to reuse
components. That sounds simple enough, but to make a component truly
reusable, some thought must be put into its architecture and construction.
The types of things to think about to make a component reusable include how
you expect to reuse the component and what degree of freedom the
component must support.

6.1 Types of Reuse (or Reuse of Types)

The essential means to make a component reusable is to encapsulate all the
data and functionality behind a well-defined interface. The interface dictates
how you can modify, operate, and interrogate (extract data from) the
component. All access is prohibited except that specifically allowed by the
interface. We’ll consider four techniques for building reusable testbench
elements: function calls, parameterized classes, inheritance, and
configuration. Each of these techniques represents a different way of
modifying structure or behavior using an interface. In each of these
techniques, information is supplied externally to change the structure or
behavior of the element. The first three ways to make an element reusable are
a recap from Chapter 2, where we discussed object-oriented programming.

Function call. An algorithm or other unit of functionality is
encapsulated into a function call. Whenever you need that
functionality, you can simply invoke the function rather than cut-
and-paste the code or rewrite it completely in place. Functions

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_6,
© Mentor Graphics Corporation, 2009

136 Reusable Components
can take parameters whose values alter the behavior of the
function.

Inheritance. Encapsulating data and functionality of arbitrary
complexity into a single object hides that complexity so that the
object can be dropped into place and operated through its
interfaces. Adding to or modifying the functionality through
inheritance is a way to reuse the base object and take advantage
of whatever magic it contains.

Parameterized classes provide a way to build reusable classes. A
class with parameters forms a template1 which can be
instantiated multiple times with different parameters to form a
family of classes. Scalar values and types can be used as
parameters. Each instance of a parameterized class is called a
specialization. To identify the specialization the parameters
become part of the type.

Run-time configuration. A configurable element can alter its
behavior or structure through setting flags, switches, or
configuration variables.

6.2 Reusable Components

To explore how to construct reusable components, let’s consider an example
of a simple memory master driving a memory through a transport channel,
all at the transaction level. Let’s look at each of these components in detail to
see how they are constructed using reuse techniques.2

Figure 6-1 Master and Slave Connected through a Transport Channel

1. What are called parameterized classes in SystemVerilog are called templates in C++.
We’ll use the terms template and parameterized class interchangeably.

2. Note that these examples exhibit similar topologies to those in Chapter 5. However,
the components in this chapter have been designed to illustrate reuse concepts that
are not discussed in Chapter 5.

HFPB
MEMORY
SLAVE

HFPB
MEMORY
MASTER

TRANSPORT
CHANNEL

Reusable Components 137
The class header for the memory master shows that the class is derived from
another parameterized base class, hfpb_master_base. The base class is
parameterized identically to the derived class.

27 class hfpb_random_mem_master
28 #(int DATA_SIZE=8, int ADDR_SIZE=16)
29 extends hfpb_master_base #(DATA_SIZE, ADDR_SIZE);

We’ve made the assumption that users of the HFPB protocol will likely build
various kinds of masters to drive transactions on an HFPB bus. The
hfpb_master_base allows us to put structures and functionality in the base
class that will be used by all masters. So, in building our master,
hfpb_random_mem_master, we reuse the functionality provided in the base
class.

The HFPB master base class contains a variety of things.

36 class hfpb_master_base
37 #(int DATA_SIZE=8, int ADDR_SIZE=16)
38 extends ovm_component;
39
40 typedef hfpb_master_base
41 #(DATA_SIZE, ADDR_SIZE) this_type;
42 typedef ovm_component_registry
43 #(this_type) type_id;
44
45 ‘include “hfpb_parameters.svh”
46
47 ovm_transport_port
48 #(hfpb_tr_t, hfpb_tr_t) transport_port;
49
50 ovm_barrier objection;
51 protected hfpb_addr_map #(ADDR_SIZE) addr_map;

It contains a typedef of ovm_component_registry, which causes the
component to be registered in the factory. It contains a transport port, an
objection barrier, and an address map. These are all facilities that can be used
by masters derived from this class.

The HFPB master base class is an example of using object-oriented
inheritance as a reuse technique. The benefit of using inheritance is that you
only have to write and test the code for facilities in the base class once. Any
time you reuse the base class to build a new bus master, you are guaranteed
consistency in structure of the master. For example, you will always know

138 Reusable Components
that masters derived from hfpb_master_base will have a transport port and
its name is transport_port.

hfpb_random_mem_master, the derived master, randomizes a sequence of
memory transactions. Some parameters, max_bursts and max_burst_size,
guide the randomization. max_bursts is the maximum number of bursts to
be issued by the master in a test, and max_burst_size is the maximum
number of transactions in a single burst. Instead of hardcoding these values,
we make them available to the object through the configuration facility.

54 max_burst_size = 16;
55 if(!get_config_int(“max_burst_size”, max_burst_size))
begin
56 $sformat(s, “max burst size not specified, using
default of %0d”, max_burst_size);
57 ovm_report_warning(“build”, s);
58 end
59 $sformat(s, “max burst size: %0d”, max_burst_size);
60 ovm_report_info(“build”, s);
61
62 max_bursts = 100;
63 if(!get_config_int(“max_bursts”, max_bursts)) begin
64 $sformat(s, “max bursts not specified, using default
of %0d”, max_bursts);
65 ovm_report_warning(“build”, s);
66 end
67 $sformat(s, “max bursts: %0d”, max_bursts);
68 ovm_report_info(“build”, s);

For each of the two parameters, we first establish a default value of 16 for
max_burst_size and 100 for max_bursts. Then, for each one, we call
get_config_int to see if a value has been specified externally. If not, we
issue a warning to alert the user that no value has been specified and use the
default.

It’s important to issue the warning message if get_config_* returns a 0.
Without the warning, the component silently uses the default value even if that
was not the intention. It’s possible, for example, that the test writer neglected to
supply a value in the configuration database for max_burst_size and
max_bursts. Or, in the call to set_config_int, it’s possible that the test
writer mistyped one of the names. In that case, not realizing the mistake, the
test writer would believe that the value was being set as specified. In this case,
because of the unnoticed misspelling, the get_config_int call finds no value
to retrieve, and instead, it uses the default. Furthermore, the test behavior is
different than intended, with no warning that anything might be amiss. With

Reusable Components 139
the warning, the user can later look at the test run to determine if the test
behaved as intended.

This is an example of applying the config facility to make a component
reusable. Instead of building separate versions of the component, each with
different characteristics, we identify the characteristics that might change and
provide a means for them to be modified without having to alter the
component itself.

Verification components—drivers, monitors, and so forth—are typically
protocol-specific, meaning they know about one and only one particular
protocol. As we saw in the previous chapter, it’s straightforward to build
protocol-specific components. Protocols, however, often come in variations.
There might be the 16-bit and 32-bit versions, or the number of masters and
slaves might change, or some other characteristic of the protocol might be
configurable. The HFPB protocol, for example, can have a data bus of
arbitrary size, an address bus of arbitrary size, and the address and data
buses do not have to be the same size. Rather than build separate components
for each configuration that we might be interested in, we build a
parameterized component where the data bus size and address bus size can
be modified using class parameters. The code inside the component is written
to be independent of the parameter. That is, it makes no (or limited)
assumptions about what values the parameter takes so that anywhere the
value is needed, instead of supplying a constant, you supply the parameter.
The hfpb_driver is one such parameterized component.

23 class hfpb_driver #(int DATA_SIZE=8, int ADDR_SIZE=16)
24 extends
25 ovm_driver #(hfpb_seq_item #(DATA_SIZE, ADDR_SIZE),
26 hfpb_seq_item #(DATA_SIZE, ADDR_SIZE));

The driver has two parameters, DATA_SIZE and ADDR_SIZE. Each has a
default value, so if you do not supply one, the default is used. Any time you
declare an object of a parameterized type, you create a specialization, a copy
of the code with the parameter value substituted for its name. You don’t ever
see the specialized code; the compiler takes care of managing it without your
intervention. The driver is derived from ovm_driver, a base class that is
discussed in Chapter 8. ovm_driver is parameterized by the sequence item
types passed between it and the sequencer. In the case of the HFPB protocol,
the sequence items are also parameterized with DATA_SIZE and ADDR_SIZE.

The driver code is written so that any place there is a need for either the data
bus size or the address bus size, DATA_SIZE and ADDR_SIZE parameters are
used as constants. We can use a parameterized component in many different

140 Reusable Components
situations, and by doing so, we maintain independence of any specific value
of either DATA_SIZE or ADDR_SIZE. Then, by altering the parameters, we can
affect the component’s structure. Thus, we can reuse our parameterized
component in systems with different address and data bus widths.

By building all the HFPB components so that they are parameterized in the
same manner, we can construct an entire testbench that is independent of the
address and data bus widths. Starting at the top, we supply the ADDR_SIZE
and DATA_SIZE parameters in the top-most module. This is the only place it is
necessary to specify values for DATA_SIZE and ADDR_SIZE. Everywhere else,
the values are received through class parameters.

83 module top;
84
85 parameter int DATA_SIZE = 8;
86 parameter int ADDR_SIZE = 9;
87
88 env #(DATA_SIZE, ADDR_SIZE) e;
89
90 initial begin
91 e = new(“env”);
92 run_test();
93 end
94
95 endmodule
file: 06_reuse/01_TL/top.sv

Those parameters are passed to env, the topmost testbench component, by
creating a specialization of the parameterized class. env, of course, is a
parameterized component whose parameters are also DATA_SIZE and
ADDR_SIZE. Further, any components instantiated in env that depend on the
address or data bus sizes are similarly parameterized.

42 class env #(int DATA_SIZE=8, int ADDR_SIZE=16)
43 extends ovm_component;
44
45 hfpb_mem #(DATA_SIZE, ADDR_SIZE) mem;
46 hfpb_random_mem_master #(DATA_SIZE, ADDR_SIZE) mm;
47 hfpb_addr_map #(ADDR_SIZE) addr_map;
48
49 tlm_transport_channel
50 #(hfpb_transaction #(DATA_SIZE, ADDR_SIZE),
51 hfpb_transaction #(DATA_SIZE, ADDR_SIZE))
52 transport_channel;
file: 06_reuse/01_TL/top.sv

Agents 141
6.3 Agents

It’s quite common to find that when you build testbenches you will see a lot of
repeated instantiations and connections. It is typical to connect drivers and
monitors in much the same way. Also, you will often find that when you
repeat certain conglomerations of components, you will want them to be
consistently configured. Individually instantiating and configuring
components can introduce error-prone tedium. Agents address this problem.

Agents are all about reuse. They reuse monitors, drivers, and other
components that are part of a particular protocol, and they themselves form
reusable components by creating an interface around the subordinate
components. An agent contains all the elements of a protocol encapsulated in
a single package. You can apply the protocol easily in a testbench by
instantiating this package, rather than separately instantiating a driver,
monitor, and other protocol-specific components.

The agent is the wrapper around all the components that implement a
protocol. It serves as the interface to all the protocol components. The
interface takes several forms: class parameters, ports and exports, a virtual
interface, and a configuration interface. The class parameters are passed on to
the subordinate protocol components. The ports and exports provide the
ingress and egress points for transactions; the virtual interface provides the
pin-level connection point; and the configuration interface enables you to
turn on or off various components to customize the agent’s behavior for
specific applications.

Figure 6-2 shows a simple agent with just a driver and a monitor. The external
interfaces include an export for a transaction ingress, an analysis port (which
makes available all bus transactions), and a virtual interface for pin-level
connections to the bus.

Figure 6-2 Simple Agent with a Driver and a Monitor

DRIVER MONITOR

has_driver = 1
has_monitor = 1

142 Agents
In some cases, you may not need both a monitor and a driver. Say you only
need the driver. You can still use the agent and just turn off the monitor. The
agent uses the configuration system to determine which internal components
are enabled or disabled. The has_driver and has_monitor flags (in this case)
are used to select which components are enabled.

Figure 6-3 Simple Agent with Driver Disabled

The simple agent with the driver turned off functions simply as a monitor.
Conversely, you can turn off the monitor and operate the device as a driver.
Of course, it doesn’t make sense to turn off both the driver and monitor
because then the agent would not do anything.

Figure 6-4 Simple Agent with the Monitor Turned Off

If you only want to use either a driver or a monitor, why bother using the
agent? Why not just simply instantiate a driver or a monitor as required? The
reason is simple: reuse. If we instantiate only a driver in the environment and
later decide we need a monitor, then we have to get the text editor out and
change the environment code to instantiate the monitor and connect it. Since
we used an agent, we can just turn on the has_monitor switch and not have
to modify the environment code at all.

DRIVER MONITOR

has_driver = 0
has_monitor = 1

DRIVER MONITOR

has_driver = 1
has_monitor = 0

Reusable HFPB Protocol 143
6.4 Reusable HFPB Protocol

The HFPB agent is a highly parameterized and configurable device. It
contains all of the protocol-specific components needed for the HFPB
protocol in one instantiable component. This includes masters, drivers (we’ll
explain the difference shortly), sequencer, slaves, and a coverage collector.
The connections between these components are specified in the agent. Like
the simple agent discussed above, this agent has class parameters, a collection
of transaction-level ports and exports, a virtual interface for pin-level
connections, and a configuration interface.

Figure 6-5 HFPB Agent

The parameters in the agent’s class header, DATA_SIZE and ADDR_SIZE, are
used in creating the internal structure of the agent.

138 class hfpb_agent #(int DATA_SIZE=8, ADDR_SIZE=16)
139 extends ovm_agent;

MASTER SLAVE
0

SLAVE
1

SLAVE
N-1

MONITOR

HFPB AGENT

.

.

.

BUS
COVERAGE

DRIVERSEQUENCER

144 Reusable HFPB Protocol
The external connections include a virtual interface for pin-level connections,
a transport export for traditional TLM use, a sequence pull port for
connecting to a sequencer, an array of slave exports (one for each slave), and
an analysis port for transmitting transactions recognized on the pin-level bus.

142 virtual hfpb_if #(DATA_SIZE, ADDR_SIZE) m_bus_if;
143
144 ovm_transport_export
145 #(hfpb_transaction #(DATA_SIZE, ADDR_SIZE),
146 hfpb_transaction #(DATA_SIZE, ADDR_SIZE))
147 transport_export;
148
149 ovm_seq_item_pull_port
150 #(hfpb_seq_item#(DATA_SIZE, ADDR_SIZE),
151 hfpb_seq_item#(DATA_SIZE, ADDR_SIZE))
152 seq_item_port;
153
154 ovm_slave_export
155 #(hfpb_transaction #(DATA_SIZE, ADDR_SIZE),
156 hfpb_transaction #(DATA_SIZE, ADDR_SIZE))
157 slave_export [];
158
159 ovm_analysis_port
160 #(hfpb_transaction #(DATA_SIZE, ADDR_SIZE))
161 analysis_port;

The agent contains a collection of protocol components. Notice that they are
all declared as local, except for the sequencer. All access to these components
is through the interfaces just listed and not directly to the components. This
data hiding helps us ensure that the agent remains reusable by not allowing
users to form improper dependencies on the internal objects of the agent.

164 local hfpb_master #(DATA_SIZE, ADDR_SIZE) master;
165 local hfpb_driver #(DATA_SIZE, ADDR_SIZE) driver;
166 local hfpb_slave #(DATA_SIZE, ADDR_SIZE) slave [];
167 local hfpb_monitor #(DATA_SIZE, ADDR_SIZE) monitor;
168 local hfpb_coverage #(DATA_SIZE, ADDR_SIZE) cov;
169 local hfpb_talker #(DATA_SIZE, ADDR_SIZE) talker;
170 hfpb_sequencer #(DATA_SIZE, ADDR_SIZE) sequencer;

The reason the sequencer is not declared as local is because it is necessary to
access the sequencer in order to operate it. In our HFPB agent we have both a
master and a driver. The difference between a master and a driver is that the

Reusable HFPB Protocol 145
master has a transport export and the driver has a seq_item_pull_port for
sequences, which is connected to a sequencer. (We’ll discuss sequences and
sequencers at length in Chapter 8). Also, the objects accepted on the input of
the master must be derived from ovm_transaction and the objections
accepted by the driver must be derived from ovm_sequence_item. These are
two different means for moving request and response transactions into and
out of the agent. The master is used for traditional structural transaction-level
models, and the driver is for processing transactions (in the form of sequence
items) generated by sequences. The HFBP protocol allows for exactly one
master and one or more slaves, so the master and driver are mutually
exclusive. It doesn’t make sense in this protocol to have more than one device
driving the bus.

An important thing to observe is that the interfaces and internal components
have class parameters that are identical to the agent’s, that is, DATA_SIZE and
ADDR_SIZE. By creating a family of components for the HFPB protocol that
are parameterized identically, we can pass parameters and avoid specifying
the values of those parameters more than once.

Not all of the internal components and interfaces are instantiated each time
the agent is used. Only those that are needed for the specified configuration
are created. Rather than create separate agents for each possible
configuration, which would be very clumsy, we use the configuration facility
in OVM to change the structure of the agent. Our HFPB agent has a number
of configuration parameters that control its structure.

175 local bit has_monitor;
176 local bit has_coverage;
177 local bit has_talker;
178 local bit has_master;
179 local bit has_driver;
180 local bit has_sequencer;
181 local int unsigned slaves;
182 local hfpb_vif #(DATA_SIZE, ADDR_SIZE) vif;

In build() and connect() the agent uses the values of these configuration
parameters to control which sub-components are instantiated and how they
are connected. The value for each configuration parameter is obtained
through calls to get_config_int (or, in the case of vif, get_config_obj). In
the agent’s build() function is a series of calls to get_config_* to obtain all
the configuration information needed by this component.

199 if(!get_config_int(“has_monitor”, has_monitor)) begin
200 has_monitor = 0;
201 monitor = null;

146 Reusable HFPB Protocol
202 end
203
204 if(!get_config_int(“has_coverage”,
205 has_coverage)) begin
206 has_coverage = 0;
207 cov = null;
208 end

. . .

As the build() function obtains all the configuration parameters, it also does
any necessary error checking and consistency checking. Each get_config_*
call is encased in a conditional statement that checks the status of the call. If
the call fails, meaning there is no item with the specified name for the current
scope in the configuration database, then we make sure the configuration
parameter is set to a legal value. Other variable settings are also made, as
appropriate. For example, if has_monitor is not supplied, then we make sure
it is set to 0 and the monitor handle is null. If has_coverage is set to 1 we also
set has_monitor to 1 because it would not make any sense to have a coverage
collector and no monitor. And so on.

Further down in build, we use the configuration parameters to construct the
internals of the agent. As an example, if has_master is set, then we instantiate
the master component and the transport export that it will use to connect to
external components.

284 if(has_master) begin
285 master = new(“master”, this);
286 transport_export = new(“transport_export”, this);
287 end

Later, in the connect phase, we will again use the has_master configuration
parameter, this time to determine whether to connect to the transport export.

340 if(has_master) begin
341 transport_export.connect(master.transport_export);
342 end

This check is necessary because if has_master is 0, then we know that neither
the master component nor the transport export were instantiated. Checking
the value of has_master again ensures that we don’t attempt to connect
components that were not instantiated.

Reusable HFPB Protocol 147
The virtual interface vif is also obtained through the configuration facility
using the interface object technique described in Section 4.7. Strictly speaking,
the interface object is not a configuration parameter. Virtual interfaces are
part of the connectivity of the design. If you leave out the virtual interface, it’s
likely the agent won’t work correctly in the design.

We can use our highly configurable agent in a variety of ways. The table
below summarizes some of the interesting configurations

Mode Config Settings

Monitor has_monitor = 1
has_coverage = don't care
has_talker = don't care
has_master = 0
has_driver = 0
has_sequencer = 0
slaves = 0

Master has_monitor = don't care
has_coverage = don't care
has_talker = don't care
has_master = 1
has_driver = 0
has_sequencer = 0
slaves = 0

Driver has_monitor = don't care
has_coverage = don't care
has_talker = don't care
has_master = 0
has_driver = 1
has_sequencer = 0
slaves = 0

Sequencer has_monitor = don't care
has_coverage = don't care
has_talker = don't care
has_master = 0
has_driver = 1
has_sequencer = 1
slaves = 0

148 Agent Example
In monitor mode, all the components are turned off except the monitor. The
agent then functions strictly as a monitor. You can similarly configure master
mode by turning off everything except the master and then operate the agent
solely as a master. You can turn on or off any component or subset of
components in the agent.

By encapsulating all of the protocol-specific components in a single
component called an agent, and by employing the OVM configuration
facility, you can create a single component that can be used for a variety of
applications. One reason for all this configurability is to enable reuse of block-
level testbench components, unchanged, in a system-level testbench. We will
discuss this in detail in Chapter 9.

6.5 Agent Example

As an example of using an agent, we’ll transform the design shown in Figure
6-1 to use an agent instead of a transport channel. We’ll also add a second
memory.

Figure 6-6 An Example Using an Agent

In this example, the agent serves as the bus model. It contains the master and
slaves and all the connections between them. In addition, it contains a
monitor. For this example, we configure the agent in this way:

80 set_config_int(“hfpb_agent”, “has_monitor”, 0);
81 set_config_int(“hfpb_agent”, “has_master”, 1);
82 set_config_int(“hfpb_agent”, “slaves”, 2);
83 set_config_int(“hfpb_agent”, “has_talker”, 0);
84 set_config_object(“*”, “addr_map”, addr_map, 0);
file: 06_reuse/02_RTL/top.sv

HFPB
MEMORY
SLAVE

HFPB
MEMORY
MASTER

HFPB
AGENT

HFPB
MEMORY
SLAVE

Agent Example 149
The monitor, master, and talker are turned on, and the bus is configured to
have two slaves. Additionally, an address map is supplied, which identifies
which part of the address space each memory slave occupies. A talker is a
subscriber device connected to the analysis port. It simply prints out the
transactions recognized by the monitor. The talker is turned on when you
want to see a printed report of all the transactions that go through the agent.
Given this particular configuration, we are effectively building a topology
shown in Figure 6-7.

Figure 6-7 Complete Topology of Agent Example

The top-level module for this design is similar to the one described in the
example in Section 6.2. Like that example, the values for the DATA_SIZE and
ADDR_SIZE parameters are set here and passed into the class-based
environment, which in turn, passes them on to the agent.

120 module top;
121
122 parameter int DATA_SIZE = 8;
123 parameter int ADDR_SIZE = 9;
124
125 env #(DATA_SIZE, ADDR_SIZE) e;
126 hfpb_vif #(DATA_SIZE, ADDR_SIZE) hfpb_vif_obj;
127
128 clk_rst cr();
129 clock_reset ck (cr);
130 hfpb_if #(DATA_SIZE, ADDR_SIZE) bus_if (cr.clk, cr.rst);
131
132 initial begin
133
134 e = new(“env”);
135 hfpb_vif_obj = new(bus_if);

MASTER
SLAVE

0

SLAVE
1

MONITOR

HFPB AGENT

TALKER

HFPB
MEMORY
SLAVE

HFPB
MEMORY
MASTER

HFPB
MEMORY
SLAVE

150 Summary
136 set_config_object(“*”, “hfpb_vif”, hfpb_vif_obj, 0);
137
138 fork
139 ck.run();
140 join_none
141
142 run_test();
143 end
144
145 endmodule
file: 06_reuse/02_RTL/top.sv

In addition, we use the interface object technique described in Section 4.7 to
pass the virtual interface into the class-based environment.

Through the application of parameterized classes and the OVM configuration
facility we are able to create a single component, the HFPB agent, that enables
us to realize a variety of topologies and configurations of HFPB protocol
components.

6.6 Summary

One of the primary keys to improving the productivity and reliability of your
verification flow is reuse. Reusing components saves time by not having to
write new code. Reused components are more robust by virtue of the fact that
they have been used in multiple applications. Reusable components don’t fall
out for free; you have to put some thought into how you will reuse a
particular component. Fortunately, SystemVerilog and OVM provide some
facilities that encourage the development of highly reusable testbench
elements.

7

Complete Testbenches
To answer does-it-work and are-we-done questions, we need more than just
drivers and monitors. We need to collect coverage information to answer are-
we-done questions; we need a reference model and a mechanism to compare
the function of the reference model to answer does-it-work questions; and we
need a control mechanism to shut down the testbench at the appropriate time.
Finally, we need some adapters and connectors to put the whole thing
together.

7.1 Floating Point Unit

This and subsequent chapters illustrate testbench construction techniques
using a floating point unit (FPU) design. This design accepts a pair of floating
point operands and an operator, and computes the result. This section
presents an example that uses the transaction-level FPU to illustrate the
construction of an OVM coverage collector. The figure below shows the
organization of the example.

Figure 7-1 Simple FPU Testbench with Coverage

CALC FPUTRANSPORT
TAP

FPU
COVERAGE

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_7,
© Mentor Graphics Corporation, 2009

152 Floating Point Unit
The calculation generator, CALC, sends randomized arithmetic calculations to
the FPU in the form of FPU request transactions. The FPU performs the
calculation and returns a response transaction that contains the result of the
calculation. A tap is connected between the stimulus generator and the DUT.
The tap’s role is to form requests and responses into pairs and send the pairs
to analysis components via an analysis port.

The transaction-level FPU is a simple device. The kernel of the model is the
classic transaction-level modeling idiom for slaves: getting a request,
processing it, and returning a response.

58 forever begin
59 get_port.get(req);
60 rsp = compute(req);
61 put_port.put(rsp);
62 end
63 endtask

The communication interface to the FPU is handled via an embedded
tlm_transport_channel (see “Transport” on page 58). To simplify coding of
the run() task, we declare a get_port and a put_port to connect to the
internal slave side of the transport channel. The get_port is for retrieving
requests, and the put_port is for returning responses.

23 class fpu_tlm extends ovm_component;
24
25 ovm_transport_export #(fpu_request,
26 fpu_response) transport_export;
27
28 local tlm_transport_channel #(fpu_request,
29 fpu_response) mstr_chan;
30 local ovm_blocking_get_port #(fpu_request) get_port;
31 local ovm_blocking_put_port #(fpu_response) put_port;

44 function void connect();
45 transport_export.connect(mstr_chan.transport_export);
46
get_port.connect(mstr_chan.blocking_get_request_export);
47
put_port.connect(mstr_chan.blocking_put_response_export);
48 endfunction

The heart of the compute function is a case statement that performs the
requested arithmetic operation.

75 case(op)

Floating Point Unit 153
76 OP_ADD: result = req.a + req.b;
77 OP_SUB: result = req.a - req.b;
78 OP_MUL: result = req.a * req.b;
79 OP_DIV:
80 if (req.b <= 1.0e-38 && req.b >= -1.0e-38)
81 result = _nanf(); // div by zero
82 else
83 result = req.a / req.b;
84 OP_SQR:
85 if (req.a < 0.0)
86 result = _nanf();
87 else
88 result = req.a ** 0.5; // square root
89 endcase

The case statement switches on the requested operation, and each of the case
branches performs a specific computation. The divide case first checks to see
if the divisor is zero, since division by zero is undefined. In the RTL version of
the FPU, a divide-by-zero exception will be raised when a division operation
is selected and the divisor is zero. The square root branch checks to see if its
operand is less than zero, since the square root of a negative number is also
undefined. In both cases, the result is set to NaN, meaning not a number,
which is the IEEE floating point standard value for undefined values.

The key design consideration of the transport tap is that it doesn’t consume
any time. That is, there must be no delta cycle delay between the transport
call in the generator and the transport call in the slave. To meet this
requirement, we implement the blocking transport interface directly using an
ovm_blocking_transport_imp. Our implementation of transport()

forwards the request downstream and the response back upstream. It also
forms the request and response into a pair and sends it out an analysis port.

89 task transport(input fpu_request req,
90 output fpu_response rsp);
91
92 fpu_pair pair;
93
94 transport_port.transport(req, rsp);
95 pair = new(req, rsp);
96 pair_ap.write(pair);
97
98 endtask
file: 07_complete_testbenches/01_tlm_reference/top.sv

By supplying an implementation instead of connecting to a channel, we avoid
any delays associated with moving data through the channel.

154 Coverage Collectors
7.2 Coverage Collectors

A key component in answering the are-we-done question is the coverage
collector. Its role, as the name suggests, is to collect functional coverage
information as the simulation proceeds. Coverage is a quantitative measure of
how much of the design a test has exercised. Coverage collectors obtain
information about what has been exercised and use it to calculate the answer
to are-we-done questions.

Coverage collectors are constructed in OVM as extensions of the
ovm_subscriber abstract base class. As you can see below, the subscriber has
an implementation of the analysis interface that contains a single nonblocking
function, write().

virtual class ovm_subscriber #(type T = int)
 extends ovm_component;

 typedef ovm_subscriber #(T) this_type;

 ovm_analysis_imp #(T, this_type) analysis_export;

 function new(string name, ovm_component parent);
 super.new(name, parent);
 analysis_export = new("analysis_imp", this);
 endfunction

 pure virtual function void write(input T t);

endclass

Since it is an abstract class, you must extend ovm_subscriber and define
your own implementation of the write() function to record the coverage.
The ovm_analysis_imp binds the connector to the actual interface
implementation. We call it analysis_export because, externally, it looks
exactly like an export, in that it provides an implementation to the calling
port. When you extend ovm_subscriber, you simply connect the
analysis_export to the desired analysis_port, and you’re in business.

The implementation of the write() function collects data from the object
passed in as its argument and processes it. The processing can be of any sort,
as long as it maintains the nonblocking semantic. SystemVerilog provides the
covergroup construct to aggregate and process the actual coverage data.
Usually, the write() method will copy relevant fields of its input transaction
into a class variable that is then sampled by the covergroup. In effect, the role
of the subscriber is to provide a means to connect the covergroup to other
OVM components that feed the subscriber data to analyze.

Coverage Collectors 155
In our FPU example, the coverage collector that is connected to the tap serves
a dual role. It collects coverage, of course, and it shuts down the simulation
when a coverage threshold is reached.

The work of the coverage collection is performed by a covergroup embedded
in the subscriber. This particular covergroup, called fpu_cov, has a single
coverpoint, cons_op, which counts FPU operations. For this particular
covergroup, 100 percent coverage is reached when each operation is executed
twice.

57 covergroup fpu_cov;
58 cons_op : coverpoint m_op {bins adds = (OP_ADD [* 2]);
59 bins subs = (OP_SUB [* 2]);
60 bins muls = (OP_MUL [* 2]);
61 bins divs = (OP_DIV [* 2]);
62 bins sqrs = (OP_SQR [* 2]); }
63 endgroup

Of course, the implementation of covergroups and the criteria for reaching
full coverage is application-specific. This particular covergroup is used to
illustrate the concept.

The write() function has three responsibilities in our coverage collector. It
copies data from the transaction passed into a class variable so the data is
visible to the covergroup, it calls sample() on the covergroup, and it tests to
see if the coverage threshold has been reached. The call to sample() instructs
the covergroup to look at the current values of the relevant covered variables
and update its counts.

78 function void write(input fpu_pair t);
79
80 real coverage;
81 m_op = t.req.op;
82 m_round = t.req.round;
83
84 fpu_cov.sample();
85
86 coverage = fpu_cov.get_inst_coverage();
87 if(coverage >= coverage_threshold) begin
88 done = 1;
89 end
90
91 endfunction

In addition to keeping count of coverage information, the coverage collector
allows the testbench to be shut down when the coverage threshold is reached.

156 FPU Agent
It does this in conjunction with the top-level environment. The top-level
environment calls global_stop_request() as the first (and only) statement
in its run() task. This causes stop() to be called in all components that have
enable_stop_interrupt set to 1, including our coverage collector. When all
stop() tasks return, then the simulation shuts down. Our coverage collector
does not return from the stop() task until the done bit is set, indicating that
full coverage has been reached.

96 task stop(string ph_name);
97 wait (done == 1);
98 ovm_report_info(“stop”, “allowing stop”);
99 endtask

Notice that we do not need any explicit communication path between the
coverage collector and the test. The stop_request mechanism in OVM
automatically handles the proper notification. The test will not complete until
all components in the testbench (that have their enable_stop_interrupt bit
set) return from their stop() methods, or a timeout has been reached.

So, just because the stop() task in this component is unblocked, it doesn’t
mean the simulation will immediately terminate. It only means that from the
perspective of this coverage collector, it’s okay for the simulation to terminate.
It could be that there are other components whose stop() task still blocks for
one reason or another. Only when all the stop() tasks return will shutdown
begin.

7.3 FPU Agent

As we refine the transaction-level model of the FPU to RTL, it becomes
necessary to ensure that the interface protocol is exercised fully and correctly.
To illustrate this verification task, we use an RTL version of the FPU model
written in VHDL.1 The interface to the FPU is straightforward, which makes
it a good candidate for the examples. Figure 7-2 shows the pinout for the FPU
block. It has two 32-bit input buses for A and B operands and a 32-bit bus for
the output result. A 2-bit input bus defines the rounding mode, and a 3-bit
input bus defines the operation to be performed. Eight output pins signal
exceptions, one per pin

1. The FPU in our examples is the FPU100 design from opencores.org. For complete
details see http://www.opencores.org/projects.cgi/web/fpu100/overview.

FPU Agent 157
.

Figure 7-2 Pinout for FPU

The 32-bit A and B operands and the 32-bit result are floating point values
and are represented using the IEEE 754 standard for binary representation of
floating point values.

The tables below summarize the function of the FPU.

The FPU is operated by the start pin. A calculation begins on the next rising
clock edge when the start pin is asserted. The FPU asserts the ready pin
when the calculation is complete. The device is pipelined with a depth of 1 so

FPU

32

32

32
A

B

OUT

READY

Exceptions

OP ROUND START

3 2

8

CLK

Exceptions

inexact

overflow

underflow

divide-by-zero

infinite

zero

Qnan

Snan

Round

00 even

01 zero

10 up

11 down

Operation

000 add

001 subtract

010 multiply

011 divide

100 square root

101 unused

110 unused

111 unused

158 FPU Agent
when the ready pin asserts, it indicates that the result of the previous
calculation is available on the outputs.

To use the FPU in testbenches it’s convenient to treat it like a protocol—to
create a driver, monitor, and so forth, and encapsulate them in an agent.
While the interface to the FPU is not a general-purpose protocol like our
HFPB protocol or others such as USB, PCI, and so forth, thinking of it in those
terms enables us to create reusable components for building testbenches for
the FPU or devices that use the FPU.

The organization of the FPU agent is shown in Figure 7-3 below. It’s
organized much like the HFPB agent. It has masters and drivers, which
convert transactions into pin-level activity. It also has a pin-level bus, monitor,
talker, and coverage collector. One important difference is that it doesn’t have
slaves, so you can’t really use the agent as a standalone bus model. Since the
FPU interface is a protocol for accessing a specific device and not a bus or a
communication protocol, there is no problem.

Figure 7-3 FPU Agent

FPU
MASTER

FPU
MONITOR

FPU AGENT

FPU
TRANSPORT

MASTER

FPU
DRIVER

FPU
SEQUENCER

FPU
TALKER

COVERAGE
COLLECTOR

Scoreboards 159
As with our HFPB Agent, the FPU Agent includes a protocol-specific
coverage collector. The monitor detects request and response transactions on
the pin-level interface and assembles them into an fpu_pair transaction,
which includes both the request and response transactions embedded in it.
One way to customize the agent is to configure it via the factory to instantiate
different coverage collectors, depending on what you are trying to
accomplish in your test.

The FPU agent has three ways to drive transactions on the bus: a master, a
transport master, and a sequencer-driver combination. The master and
transport master use transaction objects derived from ovm_transaction. The
sequencer-driver uses transaction objects derived from ovm_sequence_item.
The difference is that sequence items have some extra machinery that enables
them to be transported through a sequencer to a driver. Besides being derived
from different base classes, the contents of the sequence items and the
transactions are identical. Chapter 8 discusses sequences and sequence items
more thoroughly. These three components for driving transactions to the FPU
are mutually exclusive. Good coding practices dictate that the configuration
interface for the FPU agent ensures that no more than one form is
instantiated.

7.4 Scoreboards

The term scoreboard is a generic term for a wide range of component types
whose function is to answer does-it-work questions. The essential
characteristic of a scoreboard is that it collects data about the operation of the
DUT as the simulation proceeds and compares it with a reference of some sort
to determine if the DUT is functioning correctly. A scoreboard can be as
simple as a trigger that recognizes when a flag is raised or a truth table, as in
the simple testbench in Section 1.2.2. Or it can be as complex as a complete
reference model of a complete system design.

For the FPU design, we embed a scoreboard inside a reference model. The
The reference for the FPU contains the transaction-level implementation of
the FPU and a scoreboard to compare the data generated by reference with
the results from the RTL DUT. Figure 7-4 shows the reference, along with an
example design that uses it.

160 Scoreboards

Figure 7-4 Complete FPU Testbench

In this application, the reference model serves as an analysis component. That
is, the agent sends request-response transaction pairs (fpu_pair) out its
analysis_port to be used for additional analysis beyond the protocol-
specific coverage calculated in the agent. Since an analysis_port is
unidirectional but the TLM FPU model is bidirectional, we create an adapter
component that interfaces between the two.

The FPU adapter includes an analysis_fifo (see Section 5.4) to hold the
fpu_pair transactions coming from the agent. The run task of the adapter
gets the transaction pair from the FIFO, extracts the request transaction, and
sends it to the TLM reference model, which returns a response transaction.
The adapter writes this reference response, along with the request, as a new
pair to its analysis port.

46 task run;
47
48 fpu_pair in_pair;
49 fpu_pair out_pair;
50 fpu_response rsp;

FPU
DUT

FPU
AGENTCALC

FPU reference

FPU
TLM

REFERENCE

FPU
ADAPTER

SCORE
BOARD

FPU Pair

Different Tests 161
51
52 forever begin
53 pair_fifo.get(in_pair);
54 transport_port.transport(in_pair.req, rsp);
55 out_pair = new(in_pair.req, rsp);
56 pair_ap.write(out_pair);
57 end
58 endtask

The scoreboard has two analysis exports, one connected to the agent and the
other connected to the adapter. Its run task continually compares the
reference response to the original response from the agent and reports any
errors.

7.5 Different Tests

Once the basic testbench topology has been defined, OVM lets you define a
test class that instantiates the testbench and optionally modifies it via the
factory or configuration mechanisms. Since tests themselves are classes, it is
easy to create additional tests as straightforward extensions of a base test. The
test to be run can simply be specified on the command line via the
OVM_TESTNAME plusarg or as a string argument to the run_test() task.

Since a test always instantiates a testbench, the instantiation is typically done
in the base test.

110 module top;
111
112 parameter int DATA_SIZE = 8;
113 parameter int ADDR_SIZE = 10;
114
118 virtual class test_base extends ovm_component;
119
120 typedef env #(top.DATA_SIZE, top.ADDR_SIZE) env_t;
121 env_t e;
122
123 function new(string name, ovm_component parent);
124 super.new(name, parent);
125 endfunction
126
127 function void build();
128 e = env_t::type_id::create(“env”,this);
129 endfunction
130
131 endclass
file: 07_complete_testbenches/03_tests/top.sv

162 Different Tests
Notice that the test is declared inside the top-level module, top. The testbench
and components are best declared inside packages to facilitate reuse, but tests
themselves typically rely on OOP inheritance for reuse. Having all the tests
compiled in the top-level module provides the flexibility to choose which test
to execute at run time, rather than requiring recompilation to switch between
tests. It also allows the test to use parameter values specified in the module.

Default configuration parameters and other information can be defined in the
base test or in the testbench. In this example, the test simply instantiates the
testbench, which specifies default configuration for its children in the
build() method:

73 function void build();
74
75 set_config_int(“fpu_agent”, “has_transport_master”,
1);
76 set_config_int(“fpu_agent”, “has_monitor”, 1);
77 set_config_int(“fpu_agent”, “has_talker”, 1);
78 set_config_int(“fpu_agent”, “has_coverage”, 1);
79
80 agent = new(“fpu_agent”, this);
81 reference = new(“reference”, this);
82 c = calc::type_id::create(“calc”, this);
83
84 endfunction
file: 07_complete_testbenches/03_tests/top.sv

Since configuration is hierarchical in OVM, a test may override a default
configuration in the testbench, or it may set additional configuration.
Typically, a test also sets factory overrides to swap new components into the
environment to customize the behavior. In this example, the testbench
configures the FPU agent to instantiate a coverage collector, but it is up to the
test to specify which coverage collector to use. This is done in the build()
method.

135 class test_one extends test_base;
136
137 ‘ovm_component_utils(test_one);
138
139 function new(string name, ovm_component parent);
140 super.new(name, parent);
141 endfunction
142
143 function void build();
144 super.build();
145 fpu_coverage::type_id::set_type_override(
146 fpu_ctrl_coverage::get_type());
147 endfunction

Different Tests 163
148
149 endclass
file: 07_complete_testbenches/03_tests/top.sv

Notice the calls to super.new() and super.build(). These ensure that the
base test’s underlying functionality is properly called, and they are required
for every extension of base_test. The factory override specification tells the
agent to instantiate the fpu_ctrl_coverage collector in place of its default
fpu_coverage component. As shown in Section 7.2 above, this coverage
collector ensures that all FPU operations are performed.

The same testbench may be used by a different test whose intent is to verify a
different aspect of the FPU functionality. In this case, we may wish to use a
different stimulus generator and check that interesting combinations of data
values on the two operands are generated.

153 class test_two extends test_base;
154
155 ‘ovm_component_utils(test_two);
156
157 function new(string name, ovm_component parent);
158 super.new(name, parent);
159 endfunction
160
161 function void build();
162 super.build();
163 fpu_coverage::type_id::set_type_override(
164 fpu_data_coverage::get_type());
165 calc::type_id::set_type_override(calc2::get_type());
166 endfunction
167
168 endclass
file: 07_complete_testbenches/03_tests/top.sv

Notice that test_two is also an extension of test_base, but in this case, it
instantiates both the new fpu_data_coverage collector and a new stimulus
generator, calc2.

The test is actually executed via the run_test() task in the top-level module’s
initial block. This task uses the factory to create an instance of the test class
specified either as a string argument or via the OVM_TESTNAME plusarg on the
simulator command line. For this reason, all runnable tests must be registered
with the factory. Once created by the factory, the test is run through its phases
as any other OVM component, instantiating the testbench and executing the
test. Additional tests may be added either as extensions to the base test or as
further extensions to existing tests.

164 Summary
7.6 Summary

The OVM provides ways to specify analysis components to answer the does-
it-work and are-we-done questions. Coverage collectors and scoreboards are
created specifically to answer these questions by taking data produced by
analysis ports and turning the data into useful information that guides the
verification process. Protocol-specific questions may be answered by
instantiating coverage collectors inside an agent, while additional
application-specific functional questions may be answered by analysis
components in either the testbench or the test.

Providing this clear separation between the structural testbench and the test
facilitates reuse by allowing tests to modify the structure or behavior of
components in the testbench. Having tests extend from each other or from a
common base test greatly simplifies the task of creating additional
incremental testcases to exercise different functionality. When sequences are
added to the mix, as we shall see in the next chapter, the OVM provides ways
for you to develop a vast array of tests without a lot of coding, making you
more productive.

8

Sequences
To answer the are-we-done and does-it-work questions, we have to first
stimulate the design in interesting ways. The ability of the testbench to
exercise all the meaningful functions and corner cases of a design is
dependent on the quality of the stimulus applied to it. Good quality stimulus
is complete, yet spare. It causes the design to visit as many unique states as
possible without undue repetition. Elements that generate good stimulus can
be complex to build, so it is important to have a means for building stimulus
generation elements in a modular, reusable fashion.

OVM provides a facility called sequences for building reusable stimulus
generators. Sequences are objects that produce streams of sequence items for
stimulating a driver. A sequence item is a transaction with some extra
bookkeeping members.

8.1 Sequence Basics

A sequence bears a striking resemblance to a functor, although it’s not exactly
the same thing. In OOP lingo, a functor is an object that serves as a function
replacement. SystemVerilog, which does not support operator overloading,
does not allow you to create true functors; however, sequences come close. A
sequence is an object, and like most OVM objects, it is derived from
ovm_object. The essential feature of the ovm_sequence_base base class is
that it contains a virtual task called body(). Executing a sequence means
creating an instance of it and invoking its body task. The body() task is the
reason for a sequence to exist.

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_8,
© Mentor Graphics Corporation, 2009

166 A Sequence Example
Sequences are not components; therefore, they are not part of the component
hierarchy. Sequences are associated with a sequencer, an object that is a
component, and therefore, part of the component hierarchy. The sequencer
provides a place to attach sequences and funnels sequence items to a driver.
The sequencer also arbitrates among multiple sequences operating in parallel.

Figure 8-1 Relationship between Sequences, Sequencer, and Driver

The driver and sequencer talk to each other through a special TLM port called
a seq_item_pull_port. In this, the most common use model, the driver pulls
sequence items from the sequencer1. This port has an interface specifically
designed for communication between a driver and a sequencer. The
sequences associated with a particular sequencer also have a special API for
communication. The API contains methods for requesting arbitration and
granting access as well as sending and receiving sequence items. We’ll look at
these interfaces in more detail later in this chapter.

8.2 A Sequence Example

The most basic sequence configuration consists of three components: a driver,
a sequencer, and a sequence. There are two APIs in play here: the sequence-
sequencer API and the sequencer-driver API. To illustrate how sequences are
constructed and initiated, let’s consider the simple design in Figure 8-2.

1. An alternative use model has a push sequencer, which uses an
ovm_blocking_put_port to put sequence items directly to the driver.

DRIVERSEQUENCER

SEQ
A

SEQ
B

SEQ
C

A Sequence Example 167
Figure 8-2 Simple Sequence Configuration

Because the sequencer and driver are components, they are instantiated and
connected in the top-level environment in the usual way.

129 function void connect();
130 drv.seq_item_port.connect(sqr.seq_item_export);
131 endfunction
file: 08_sequences/01_simple/top.sv

The sequence is instantiated when it is needed, in this case in the run() task.
The function start() serves to both associate a sequence with a sequencer
and initiate the execution of the sequence.

133 task run();
134 seq = new();
135 seq.start(sqr);
136 global_stop_request();
137 endtask
file: 08_sequences/01_simple/top.sv

start() is blocking; it returns only when the sequence completes. Now let’s
look at the construction of the driver and the sequence. The sequence API
provides a means for requesting service, sending requests, and, as we will see
later, retrieving responses. Here is the sequence in our simple example:

92 class my_sequence extends ovm_sequence #(trans);
93
94 task body();
95
96 trans t;
97
98 for(int unsigned i = 0; i < 10; i++) begin
99 wait_for_grant();
100 t = new();
101 assert(t.randomize());
102 send_request(t);
103 end

DRIVERSEQUENCERSEQ

168 A Sequence Example
104
105 endtask
106
107 endclass
file: 08_sequences/01_simple/top.sv

This sequence is derived from ovm_sequence and parameterized with the
type of request transaction it will send to the driver. The meat of the sequence
is in the body() task. This is where the work of the sequence is done. In this
example, the main structure in body() is a loop that sends 10 transactions. To
send a transaction, it first calls wait_for_grant() to request service.
wait_for_grant() blocks until the sequence is ready to run. The sequencer
arbitrates among multiple parallel sequences, and a call to
wait_for_grant() puts an entry in the sequencer’s arbitration queue and
waits until the sequencer grants access.

Once access is granted, the sequence can then create the request sequence
item and populate it with data. In our case, we simply randomize the item.
send_request(), as the name implies, sends the request through the
sequencer to the driver. send_request() is a nonblocking function, and it
returns in the same delta cycle in which it is called.

To communicate with the sequencer, the driver has an
ovm_seq_item_pull_port. This port is a special port, not one of the standard
ports. It is constructed in the same manner as a standard TLM port, but it has
a custom interface designed for communicating with a sequencer. The table
below identifies the essential methods in the seq_item_pull interface.

task get_next_item(output T1 t) Blocking function that retrieves
the next request.

task try_next_item(output T1 t) Pseudo-nonblocking function
that retrieves the next request.
Since it has to synchronize with
the sequence process, it will con-
sume at least one delta cycle.

function void item_done(T2 t =
null)

Signifies to the sequencer that the
item is complete.

function bit has_do_available() Asks the sequencer if there is a
sequence with a request pending.

function void put_response(T2 t) Sends a response back to the
sequence.

A Sequence Example 169
Unlike a sequence, a driver is a component, and it has the usual constructor
and phase callbacks. Since this is a simple example to illustrate the mechanics
of sequences, the driver doesn’t really drive signals on a bus. However, the
the essential structure is the same as a real driver. The run() task is a forever
loop that continually retrieves requests and simply processes them. In this
case it just prints them.

59 class driver extends ovm_component;
60
61 ovm_seq_item_pull_port #(trans) seq_item_port;
62
63 function new(string name, ovm_component parent);
64 super.new(name, parent);
65 endfunction
66
67 function void build();
68 seq_item_port = new(“seq_item_port”, this);
69 endfunction
70
71 task run();
72 trans t;
73
74 forever begin
75 seq_item_port.get(t);
76 ovm_report_info(“get request”, t.do_sprint());
77 #1;
78 end
79
80 endtask
81
82 endclass
file: 08_sequences/01_simple/top.sv

task get(output T1 t) Retrieves the next request. This is
equivalent to get_next_item (or
try_next_item) followed by
item_done().

task peek(output T1 t) Retrieves the next request with-
out consuming it.

task put(input T2 t) An alias for put_response. This
function is in the interface to
maintain consistency with the
standard TLM interface functions.

170 A Sequence Example
There are several features of a driver intended to be driven by sequences that
are different from a driver driven by a typical transaction-level model, as
described in Section 5.1. First, the ingress port for transactions is a
seq_item_pull_port. Second, the request and response types must be
derived from ovm_sequence_item. Sequence items are much like transactions
(that is, objects derived from ovm_transaction) except the
ovm_sequence_item base class contains some additional members for use in
routing the item through the sequencer to the driver and back.

Why must we use a special interface for connecting a driver to a sequencer
rather than just use the standard TLM interfaces? The reason is that the
seq_item_pull interface is designed to synchronize between two
processes—the sequence process and the driver process.

Figure 8-3 Processes Involved in Sequence Communication

Actually, there are three processes involved. Each of the objects involved in
the communication—the sequence, the sequencer, and the driver—has a
process, and those processes must all be synchronized in order for a sequence
item to be transferred from the sequence to the driver. The sequence process
is responsible for generating a sequence item. The sequencer process handles
the arbitration of multiple parallel sequences, and the driver process is
responsible for managing the bus.

Because there are multiple processes involved in moving a sequence item
from the sequence to the driver, there is no true nonblocking method in the
seq_item_pull interface. In the get example discussed in Section 3.4.2, both
the producer and consumer are in the same process. In Section 3.5, we
inserted a FIFO channel between the producer and consumer. The channel
enables the producer and consumer to each have separate processes, and it
synchronizes the two processes. That synchronization will consume at least
one delta cycle. This is true even if both the producer and consumer use
nonblocking methods to put things into the FIFO and get them out. In a
practical sense, the sequencer operates as a channel between the sequence and
the driver. Thus, the get(), get_next_item(), and try_next_item()
methods in the seq_item_pull interface will always consume at least one
delta cycle.

DRIVERSEQUENCERSEQ

Anatomy of a Sequence 171
8.3 Anatomy of a Sequence

A sequence is conceptually a very simple object whose primary role is for its
body task to generate a stream of sequence items, as we saw in the last
section. However, it has a lot of parts that enable it to be used in a number of
different ways. In this section we will discuss the various parts of the
sequence object and sketch out its functionality beyond just execution of the
body() task. The UML below shows how sequences and sequencers are
organized.

Figure 8-4 UML for Sequences and Sequencers

To review: sequencers are components; that is, ovm_sequencer is derived from
ovm_component. The sequencer is parameterized with the request and
response type of the items it will process.

Sequences, on the other hand, are not components. ovm_sequence is derived
from ovm_sequence_item, which is in turn derived from ovm_transaction,
which reflects the transient nature of sequences. Sequence items know which
sequencer they are associated with via a special reference called

+m_set_p_sequencer()
+start_item()

ovm_sequence_item

ovm_transaction

+pre_body()
+body()
+post_body()
+pre_do()
+mid_do()
+post_do()

ovm_sequence_base

+start()

-

ovm_sequence

REQ, RSP

ovm_sequencer_base

ovm_component

ovm_sequencer_param_base

REQ, RSP

ovm_sequencer

REQ, RSP

ovm_random_sequence ovm_exhaustive_sequence ovm_simple_sequence

ovm_push_sequencer

REQ, RSP

1 1

m_sequencer

1 1

p_sequencer

172 Anatomy of a Sequence
m_sequencer. This enables sequence items and sequences to access the
sequencer and use services it makes available.

A sequence may also have a reference called p_sequencer, which is also a
reference to the sequencer. The difference between m_sequencer and
p_sequencer is that m_sequencer is a reference to ovm_sequencer_base, the
sequencer’s base class, and p_sequencer is a reference to
ovm_sequencer#(REQ,RSP), the derived parameterized sequencer class. The
derived sequencer may have additional resources you add in.

The m_sequencer reference is set automatically when you call start().
Because the type of the p_sequencer is not known a priori, you must provide
a declaration of p_sequencer and implement a function to set its value. In
ovm_sequence_item, the base class for ovm_sequence, is the virtual function
m_set_p_sequencer(). In your derived sequence, you will need to define the
specific type of p_sequencer and provide an implementation of
m_set_p_sequencer().

my_sqr_type p_sequencer;

function void m_set_p_sequencer();
super.m_set_p_sequencer();
assert($cast(p_sequencer, m_sequencer));

endfunction

As a convenience, the macro ‘ovm_declare_p_sequencer will define the
type for you. You simply invoke it at the top of your sequence. Its argument is
the type of the p_sequencer.

A sequence can run other sequences. In the example above, we showed the
start() task being called from the run task of a component. The start()
task can also be called from the body() task of another sequence. start()
tasks can also be forked to allow multiple sequences to run in parallel. (We’ll
look at the details of how to manage parallelism amongst sequences in
Section 8.6.) Running sequences in parallel and allowing them to call other
sequences allows you to create arbitrary hierarchies of sequences. The
sequence hierarchy, rooted at the sequencer, is not unlike the component
hierarchy. Each sequence in the hierarchy has a location relative to the
sequencer, and thus a unique path name. The function
get_sequence_path() in ovm_sequence_item returns a string with the full
path name of a sequence.

Since sequences are not components, and thus not anchored into the
component hierarchy, they can be dynamic. Each sequence exists only as long
as the body task continues to execute. When it terminates, so does the

Another Sequence API 173
sequence. This is like the functor behavior described earlier. A functor comes
into existence, executes its function, and then goes away to be garbage
collected later. Of course, a sequence can be effectively static in that it comes
into existence when the test starts, and goes away when the test concludes.
The lifetime of a sequence is entirely dependent on its function.

When a sequence is started, pre_body() is called first, followed by body(),
and then post_body(). pre_body() and post_body() are virtual tasks with
default empty implementations. You can implement them as you please.
Typically, pre_body() is used for one-time initialization and post_body() is
for final clean-up.

8.4 Another Sequence API

In Section 8.2, we discussed how to use wait_for_grant() and
send_request() to send sequence items from a sequence to a driver. While
this is a perfectly valid way to transmit sequences, it’s not entirely general. In
this section we will discuss an alternate, more generalized way of sending
sequences. The new API consists of three methods, create_item(),
start_item(), and finish_item().

This alternate API is illustrated in an example that is a modified version of an
earlier one shown in Section 7.4. Previously, we showed how to send
transactions to a driver using a fixed stimulus generator: the random
calculator. Here, we replace the fixed stimulus generator with a sequence.

Figure 8-5 FPU Testbench with a Randomized Sequence

FPU
DUT

FPU
AGENT

FPU
RAND

SEQUENCE

FPU
REFERENCE

174 Another Sequence API
To make this replacement, the first thing we have to do is reconfigure the FPU
agent to have a sequencer and not a master.

76 set_config_int(“fpu_agent”, “has_monitor”, 1);
77 set_config_int(“fpu_agent”, “has_sequencer”, 1);
78 set_config_int(“fpu_agent”, “has_talker”, 1);
79 set_config_int(“fpu_agent”, “has_coverage”, 1);
80
81
fpu_coverage::type_id::set_type_override(fpu_ctrl_coverage::get
_type());
file: 08_sequences/08_calc/top.sv

The has_sequencer flag instructs the agent to instantiate a sequencer. Then,
in the run() task we use start() to initiate execution of the sequence.

98 task run();
99
100 fpu_seq_rand seq;
101
102 ovm_report_info(“env”, “start”);
103
104 global_stop_request();
105 seq = new();
106 seq.start(agent.sequencer);
107
108 ovm_report_info(“env”, “finish”);
109 endtask
file: 08_sequences/08_calc/top.sv

The sequence uses the alternate API to send a series of sequence items to the
driver through the sequence. As you can see in the body() task below, we first
create a new item, and then we communicate to the sequencer that we want to
send an item to the driver by calling start_item(). To create an item, we
pass its type handle to create_item(), which then uses the factory to
instantiate a new instance. Embedded in start_item() is a call to
wait_for_grant().

33 task body();
34
35 ieeeFloat f;
36
37 f = new();
38
39 for(int unsigned i = 0; i < 10000; i++) begin
40 assert($cast(req,
41 create_item(fpu_request_item::get_type(),
42 m_sequencer, “req”)));

Response Routing 175
43 start_item(req);
44 assert(req.randomize());
45 finish_item(req);
46 get_response(rsp);
47 end
48
49 endtask

finish_item() calls send_request() and wait_for_item_done(). The
contents of the sequence item are populated between the calls to
start_item() and finish_item(), either through directed or randomized
means. In the example above, we use both.

Why use this API instead of the previous one? First, recall that ovm_sequence
is derived from ovm_sequence_item—a sequence is a sequence item. Also
recall that a sequence can run another sequence. The start_item() API will
look to see if the object passed in is a sequence item or a sequence. If it’s a
sequence, it will initiate execution on m_sequencer. If it’s a sequence item, it
will send it to the driver. So, start_item() provides a polymorphic way to
initiate execution of sequences and sequence items.

8.5 Response Routing

Many bus protocols are bidirectional. In those protocols, masters send
requests and receive responses. Slaves do the opposite. They receive requests
and send responses. Drivers for bidirectional protocols have to return
responses to a sequence. In the case where there are multiple sequences
operating in parallel, there is the intuitive notion that each response sent back
by the driver must be returned to the sequence that originated the request.
The sequencer has some machinery for doing exactly that.

DRIVERSEQUENCER

SEQ

SEQ

SEQ

Response queues

176 Response Routing
Figure 8-6 Sequences with Response Queues

Each sequence contains a response queue. The put_response() method,
which is called by the driver, puts a response object in the queue for the
sequence from which the request originated. The get_response() method in
the sequence pulls the response object from its queue. The sequencer knows
in which queue to put the response because the response item contains a
sequence ID. The response item knows the sequence ID because the driver
put the sequence ID into the response item. Unfortunately, this does not
happen automatically. You have to make a call to move the sequence ID from
the request into the response. Here’s the body of a simple bidirectional driver:

137 task run();
138 request_item req;
139 response_item rsp;
140
141 forever begin
142 seq_item_port.get(req);
143 rsp = new();
144 rsp.copy_req(req);
145 rsp.set_id_info(req);
146 #1;
147 seq_item_port.put_response(rsp);
148 end
file: 08_sequences/02_bidir/top.sv

The call to set_id_info() copies sequence identification information from
the request object into the response object and enables the put_response()
method to know in which queue to put the response object.

The main code in the sequence is much like the code in the example earlier in
this chapter. The exception is the get_response() call at the end of the loop.

169 for(int unsigned i = 0; i < 10; i++) begin
170
$cast(req,create_item(request_item::get_type(),m_sequencer,”req
”));
171 start_item(req);
172 assert(req.randomize());
173 m_sequencer.ovm_report_info(“send”,
174 req.do_sprint());
175 finish_item(req);
176 get_response(rsp);
177 m_sequencer.ovm_report_info(“retrieve”,
178 rsp.do_sprint());
179 end
file: 08_sequences/02_bidir/top.sv

Response Routing 177
The flow of control does a round trip from the sequence to the driver and
back again. The activity is orchestrated by the sequencer. send_request()
initiates data transfers from the sequence to the driver; put_response()
transfers data and control back to the sequence. send_request() is
nonblocking. Once it’s called, data is sent through the sequence to the driver
and the get (or get_next_item) task is allowed to return. get_response() is
blocking, so it will wait until a response is available before it returns. This
flow is illustrated in the diagram below:

Figure 8-7 Flow of Control between Sequence and Driver

This lock-step relationship between sequences and drivers is intended for
protocols where the request and response are synchronized, and there is one
response for each request. OVM also provides an alternate control and data
flow for situations where that might not be the case. Some protocols return
responses for a group of requests instead of one response for each request.
Some protocols return responses in a different order than the request stream.
To handle these situations, the OVM sequence provides a response handler
facility. Instead of calling get_response() to retrieve a response, you use a
response handler. The response handler is a function that is invoked whenever
a response from the driver becomes available.

Here’s what the sequence looks like after it has been modified to use a
response handler.

147 class my_sequence
148 extends ovm_sequence #(request_item, response_item);
149
150 int unsigned expected_responses;
151
152 function new(string name);
153 super.new(name);
154 expected_responses = 0;

wait_for_grant

send_request(req)
get(req)

put(rsp)

get_response(rsp)

rsp.set_id_info(req)

sequence driver

178 Response Routing
155 endfunction
156
157 task pre_body();
158 use_response_handler(1);
159 endtask
160
161 task body();
162
163 request_item req;
164 response_item rsp;
165
166 for(int unsigned i = 0; i < 10; i++) begin
167 $cast(req, create_item(request_item::get_type(),
168 m_sequencer, “request”));
169 start_item(req);
170 assert(req.randomize());
171 req.seq_name = get_name();
172 m_sequencer.ovm_report_info(“send”,
req.do_sprint());
173 expected_responses++;
174 finish_item(req);
175 end
176
177 wait (expected_responses == 0);
178
179 endtask
180
181 function void response_handler(ovm_sequence_item
response);
182 response_item rsp;
183 assert($cast(rsp, response));
184 m_sequencer.ovm_report_info(“retrieve”,
185 rsp.do_sprint());
186 expected_responses--;
187 endfunction
188
189 endclass
file: 08_sequences/04_handler/top.sv

The first thing to notice is that the get_response call has been removed from
the main body loop. In its place, we’ve added a function called
response_handler. The response handler function is called by the sequencer
when the driver calls put_response() on its seq_item_port. The prototype
of ovm_sequence_base::response_handler() has ovm_sequence_item as
its argument. So, we must also use ovm_sequence_item in our
implementation and cast the argument to the response type. To let the
sequencer know that it should call the response handler when the driver
sends back a response, we turn it on using the call to
use_response_handler() in the pre_body() task.

Sequences in Parallel 179
The control flow is slightly different when we use a response handler. The
response handler operates asynchronously from the sequence body. Since
send_request() is nonblocking, the response handler will be invoked when
the driver returns a response and the sequence is blocked. In our case,
wait_for_grant() is the blocking call that allows the response handler to be
invoked.

Figure 8-8 Flow of Control with a Response Handler

By using a response handler instead of calling get_response(), we have
decoupled the collection of responses from the generation of requests. We can
use the response handler to manage out-of-order responses or protocols that
do not generate one response for every request.

8.6 Sequences in Parallel

Sequences can operate in parallel. Multiple sequences associated with the
same sequencer can operate together to send a stream of sequence items into
a driver. Running sequences in parallel is simply a matter of using fork to
execute each sequence in separate, parallel processes.

147 task run();
148
149 seq1 = new(“seq1”);
150 seq2 = new(“seq2”);
151 seq3 = new(“seq3”);
152
153 fork
154 seq1.start(sqr);
155 seq2.start(sqr);
156 seq3.start(sqr);
157 join
158
159 global_stop_request();
160 endtask

wait_for_grant

send_request(req)
get(req)

put(rsp)

response_handler

rsp.set_id_info(req)

sequence driver

180 Sequences in Parallel
file: 08_sequences/03_parallel/top.sv

In the run task above, three sequences are executed in parallel using the
SystemVerilog fork-join construct. The start() method initiates execution
of the sequence and associates it with a sequencer identified by the argument.

The sequencer arbitrates among all the executing sequences associated with
it. When a sequence calls the blocking task wait_for_grant(), an entry is
made in the sequencer’s arbitration queue. The sequence chooses a sequence
from the arbitration queue and allows it to execute by letting the task return
in the selected sequence.

By default, the sequencer arbitrates the sequences in FIFO order. However,
you have a lot of control over the specific order of parallel-sequence
execution. The sequencer supports a variety of arbitration algorithms. They
are summarized in the table below.

To change the arbitration mode, call set_arbitration() on the sequence
and specify the desired arbitration algorithm. A sequence specifies its weight
when it requests arbitration by calling wait_for_grant(), which accepts an
optional weight argument.

162 m_sequencer.set_arbitration(SEQ_ARB_WEIGHTED);
163 fork
164 A.start(m_sequencer, this, 100);
165 B.start(m_sequencer, this, 20);
166 C.start(m_sequencer, this, 10);
167 join

SEQ_ARB_FIFO FIFO ordering. This is the default arbitration
mode.

SEQ_ARB_WEIGHTED Randomly choose the next sequence. Use
weights specified by wait_for_grant() calls
to bias the selection.

SEQ_ARB_RANDOM Randomly choose the next sequence.

SEQ_ARB_STRICT_FIFO All requests at the highest priority are granted
in FIFO order.

SEQ_ARB_STRICT_RANDOM All requests at the highest priority are granted
in random order.

SEQ_ARB_USER User supplies the arbitration algorithm.

Constructing APIs with Sequences 181
file: 08_sequences/05_arb/top.sv

The code fragment above uses the m_sequencer pointer in a sequence to call
set_arbitration() and tell it which arbitration algorithm to use. Three
sequences are spawned to run in parallel, each with a different weight. The
weights are relative. The total weight for these three sequences is 100 + 20 + 10
= 130. The SEQ_ARB_WEIGHTED algorithm uses these weights to select the next
sequence to run. Given these weights, sequence A will run 100/130 or 77
percent of the time, sequence B will run 20/130 or 15 percent of the time, and
sequence C will run 10/130 or 8 percent of the time.

A sequence can specify that it doesn’t want to give up access to the driver
after only a single call to send_request(). It can lock the sequencer so that it
will run continuously. A sequence can call lock() to retain ownership of the
sequence and driver. lock() is a blocking call, and it will return when the
request is granted. The sequence holds the lock until it calls unlock(). A
slight variation of lock() and unlock() is grab() and ungrab(). These two
functions work in the same way as lock() and unlock()—grab() is a
blocking call that returns when the request is granted, and the lock is held
until a corresponding call to ungrab() is made. The difference between the
two is when the request is granted. Locks are arbitrated; they are put in the
request queue along with other requests. When the lock comes to the head of
the queue, then the sequencer grants the lock. Grabs, on the other hand, are
not arbitrated. They jump right to the head of the queue. No sequence can
have a higher priority than a grab.

By dividing the stimulus generation into small, modular sequences and
executing them in parallel, you can build complex stimulus. Rather than
building a single monolithic stimulus generator, you can more accurately
mimic the environment that the DUT will run in.

8.7 Constructing APIs with Sequences

The essence of reuse, as we discussed previously, is to build components with
well-defined interfaces. Because the interface is well defined, clients of the
component know exactly what services the component provides and how to
access those services. Dependencies are carefully contained. You can use the
sequences facility to construct such interfaces, or APIs, for your test
environment. You can create a library of sequences that enable access to the
DUT or bus, and you can layer other libraries of sequences on top of that to
build higher-level functionality.

182 Constructing APIs with Sequences
We mentioned earlier that sequences had a passing similarity to functors. You
can use that fact to construct APIs from a set of sequences. Consider that an
API is a collection of methods. A sequence is an object whose role is to
execute a single method, specifically its body() task. So, a set of sequences is
essentially a set of methods. The protocol for initiating a sequence is a bit
more verbose than just calling a task or function, but the idea is the same. The
reasons for choosing a sequence-based API over a fixed component are based
on all the sequence functionality we’ve discussed so far—sequences have
facilities built in for managing concurrency; their lifetime is controlled by the
nature of their functionality, not the containing component; they have a
modular nature; and so forth.

As an example, we can construct a test API for the HFPB protocol by
combining three sequences, one that performs a read operation, one that
performs a write operation, and one that performs an idle. These are all the
possible things that you can do with the HFPB protocol.

Figure 8-9 Using Sequences to Construct a Test API for HFPB

With those sequences in place, we can then layer an operand API that we will
use for the FPU. An operand is one or more words. The API breaks operands
into individual words that can be transmitted over an HFPB bus. On top of
the operand API, we can build tests.

The design in Figure 8-9 uses a simple transaction-level memory to illustrate
the construction of a sequence-based API and how it is formed into layers. In
this example, we have a test sequence that randomly reads and writes
operands. The operand reads and writes are implemented by the HFPB layer
to form bus reads and writes. Each layer only needs to know about the layer
below it. The top-level environment only needs to have knowledge of the test

OPERAND
API

HFPB
API

HFPB
SEQUENCER

READ

WRITERAND
RW

IDLE

READ
OPND

WRITE
OPND

Constructing APIs with Sequences 183
sequence. The test sequence only needs to know about the operand layer, and
so forth. Each layer contains declarations and invocations of the sequences
and the next, lower layer.

To start things off, the run() task in the top-level environment simply
initiates the randomizing sequence, hfpb_seq_rand_rw.

77 task run();
78 hfpb_seq_rand_rw #(DATA_SIZE, ADDR_SIZE) rand_seq;
79 rand_seq = new(“rand_rw”);
80 rand_seq.start(sqr);
81 global_stop_request();
82 endtask
file: 08_sequences/06_api/top.sv

The body() task of the hfpb_seq_rand_rw starts with the declarations of the
subordinate sequences it uses during its execution.

57 task body();
58
59 typedef hfpb_seq_read_operand
60 #(DATA_SIZE, ADDR_SIZE) read_seq_t;
61 typedef hfpb_seq_write_operand
62 #(DATA_SIZE, ADDR_SIZE) write_seq_t;
63
64 read_seq_t read_seq;
65 write_seq_t write_seq;

Note that the HFPB sequences are parameterized in the same fashion as the
other HFPB components. The DATA_SIZE and ADDR_SIZE parameters are
passed on to the operand sequences, which in turn pass them on to the read/
write sequences, and then to the sequence items generated. The types of the
parameterized sequence items then match the driver types.

The main part of the body() task uses the declared sequences to execute
randomized reads and writes of operands.

68 for (int unsigned i = 0; i < iterations; i++) begin
69 case ($random & 1)
70
71 0 : begin
72 assert($cast(read_seq,
73 create_item(read_seq_t::get_type(),
74 m_sequencer, “read_operand”)));
75 start_item(read_seq);
76 assert(read_seq.randomize());
77 finish_item(read_seq);

184 Summary
78 end
79
80 1 : begin
81 assert($cast(write_seq,
82 create_item(write_seq_t::get_type(),
83 m_sequencer, “write_operand”)));
84 start_item(write_seq);
85 assert(write_seq.randomize());
86 finish_item(write_seq);
87 end
88 endcase
89 end
90
91 endtask

The hfpb_seq_rand_rw sequence uses the start_item()/finish_item()
API for communicating with the sequencer. Similarly, the sequences in the
lower layers use the same API to invoke their sequences.

8.8 Summary

Sequences provide a highly modular and flexible means for building complex
stimulus generators. They provide sophisticated means for managing
concurrency for handling responses. Using these functor-like objects, you can
also build test APIs that encapsulate the low-level details of stimulus
generation.

9

Block-to-System
Large-scale systems contain many elements of all different sorts—buses,
bridges, processors, memories, special purpose slaves, and so forth. Each of
these needs to be verified independently, and then all must be brought
together and verified as a system. In this chapter, we explore block-level and
system-level verification and how to share testbench components between
them.

A single block can be any component of arbitrary complexity. It can be a
simple adder or a complete DSP subsystem. The concept of a block is a design
component that will become part of a larger system. When the block is
integrated into a larger system, it’s important to not lose the work done in
building the block-level testbench. By reusing as many testbench elements as
possible, you save the time of having to rewrite them. Also, results from the
block-level tests can be verified again at the system level.

9.1 Reusing Block-Level Components

We will illustrate how to reuse a block-level testbench in a system-level
testbench using an example, as we have done throughout this book. Previous
chapters introduced a number of components for the FPU design and HFPB
protocol. Figure 9-1 shows a system that’s a bit more complex than we have
seen so far, using both the HFPB protocol and the FPU.

The HFPB bus has two slaves, a transaction-level memory slave and a pin-
level FPU slave. The FPU slave is really a bridge that connects the FPU
protocol to the HFPB protocol. The FPU agent is used in monitor-mode.
Although not shown in the diagram, the FPU agent has a coverage collector

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_9,
© Mentor Graphics Corporation, 2009

186 Reusing Block-Level Components
that is turned on. The FPU reference model takes transactions from the FPU
bus and performs the same calculations as the DUT. It compares its results
with the results from the bus to determine whether the RTL DUT performed
the calculation correctly. Stimulus is generated entirely with layered
sequences. The memory master and random calculator talk to the FPU-HFPB
transport sequence, which in turn talks to the HFPB protocol layer.

Figure 9-1 Complete System Testbench

In this design we have reused almost everything from previous block-level
testbenches. The HFPB and FPU agents are the same as discussed previously.
The memory slave, sequence-based test API, and reference model are also
reused. The only thing new is the memory master and randomized calculator
sequences. In Chapter 6, where we presented the FPU, we discussed a

Layered Stimulus Generation

MEM
MASTER

HFPB
AGENT

MEMORY
SLAVE

CALC

HFPB
FPU

SLAVE

FPU
DUT

FPU
AGENT

HFPB
READ/WRITE

API

FPU-HFPB
TRANSPORT

API

FPU
REFERENCE

Reusing Block-Level Testbenches 187
randomized calculator and a memory master as components, not as
sequences.

Several things have enabled us to easily reuse components originally built for
a block-level testbench in a complete system. The agent architecture is
important here. It encapsulates everything about a particular protocol and
provides a way to configure it for different situations. In the example shown
in Figure 9-1, we have connected a transaction-level memory and a pin-level
slave to the HFPB agent. Connecting them lets us reuse top-down transaction-
level components and bottom-up RTL components in the same design. The
agent supports stimulus through both a traditional transaction-level master
or through sequences (but not both at the same time). Thus we can easily
reuse stimulus built during the verification of component blocks.

9.2 Reusing Block-Level Testbenches

Even better than reusing components from a block-level testbench is reusing
the entire testbench. Again, the architecture of agents and sequences lets us
do just that. The agent’s configurability lets us reuse the same component and
make changes to suit a new application. Sequences, with their modular
construction and support for concurrency, let us apply to the agent only the
sequences required for a particular protocol.

We employ two essential concepts in integrating testbenches. First is to
connect agents, possibly with a converter or adapter. The agents contain the
communication protocol for each block, so it’s logical that connecting agents
is equivalent to connecting block-level DUTs. Each agent encapsulates
knowledge about only one particular protocol, so it will be necessary to have
a converter or adapter of some sort to facilitate communication between
different protocols.

Second is to use sequences to generate stimulus. Because sequences can run
concurrently, it’s a simple matter of adding new sequences for the system-
level tests; you can leave the block-level stimulus in place. There’s no rewiring
to be done.

In our example, we connect two testbenches: an HFPB memory testbench and
an FPU testbench. Both of these are block-level testbenches, meaning they
verify blocks that will be connected with a larger system. They don’t make
any assumptions about how they will be integrated into the system. Each
testbench only knows about its own protocol and DUT.

Figure 9-2 shows the memory testbench. The memory is a transaction-level
memory. Recall the internal topology of the HFPB agent from Figure 6-5. The

188 Reusing Block-Level Testbenches
sequencer sends sequence items to the driver, which converts them to pin-
level protocol. The slave converts the pin protocol back to transactions, which
are handled by the responder, which is the memory in this case.

Figure 9-2 HFPB Memory Testbench

The FPU testbench shown in Figure 9-3 also uses sequences to send sequence
items to the agent. The sequencer in the agent converts them to the pin-level
protocol, which drives the DUT. The FPU reference model determines
whether the DUT produces correct results. The sequence that drives this
testbench generates random arithmetic calculations for the FPU to perform.

Figure 9-3 FPU Testbench

Now let’s look at a design composed of both the memory and FPU. This
design is an expression calculator. It takes as input ASCII strings containing
infix algebraic expressions. The design parses the expressions and generates
an intermediate program that runs on a processor. The processor executes the
program to generate reads and writes on the bus in order to perform
calculations and store and retrieve results from the memory. Figure 9-4
contains a block diagram of the complete system.

MEMORY
SLAVE

HFPB
AGENT

RAND
MEMORY

SEQUENCE

FPU
DUT

FPU
AGENT

FPU
REFERENCE

FPU
RAND

SEQUENCE

Reusing Block-Level Testbenches 189

Figure 9-4 System Block Diagram

The compiler supports a mini-language for representing infix expressions,
which includes assignments and a print statement. A typical infix expression
might look like this:

14.2 * (19.0 + 3.2e3) / .002

The term infix refers to the fact that the operator appears between its two
operands. The entire language can be described with the following BNF:

stmt := print_stmt ; | assign_stmt ;
print_stmt := print ID
assign_stmt := ID = expr
expr := term add_op term
add_op := + | -
term := factor mult_op factor
mult_op := * | /
factor := (expr) | - factor | NUM | ID

In this BNF, ID is an alphabetic identifier, and NUM is an integer or floating
point constant. The compiler converts each ID to an address location, and
when an identifier appears on the left-hand-side of an assignment, a new
value is stored for it. And when it appears on the right-hand-side, its value is
retrieved from memory. For example,

A = 92.4 * 3;

causes the result of 92.4 * 16 to be stored at the location identified
symbolically by A. The following statement causes the value of A to be
retrieved from memory and used in computing the expression.

Compiler
µP

program

MEMORY FPU

HFPB BUS

190 Reusing Block-Level Testbenches
B = 2 + (A / 7.14);

The result is then stored in the location identified by B. You can also print
values using the print statement:

print A;

-> 277.2

Assignments, variable references, and print statements turn into memory
reads and writes; numeric computations turn into FPU computations. They
also turn into bus reads and writes, as the FPU is a slave on the HFPB bus,
and transporting calculations and results to and from the FPU is done via bus
operations.

To verify this design, we must build a testbench. We already have testbenches
for the memory block and for the FPU block. We will illustrate how to
integrate those with the complete system. The architecture for the system
testbench is shown in Figure 9-5. The main bus is the HFPB bus, to which we
must connect the FPU. The HFPB-FPU slave device serves as a bridge
between the HFPB and FPU protocols. It converts HFPB requests to FPU
request and FPU responses back to HFPB responses.

The FPU block does not know about the HFPB protocol, so the bridge is
necessary. In practice, it is common for slaves to be built with a specific bus
protocol in mind. In that case, the bridge is subsumed by the FPU block. Also
in that case, the top-level environment does not have to specifically
instantiate it. For the purposes of building examples to highlight OVM
concepts, we chose to make it separate to emphasize the point that there must
be an explicit connection between blocks.

The block testbenches still contain their sequences. These can be turned on or
off. You may want to turn them on initially to make sure that the blocks still
work as expected when connected to the system. Later, you can turn them off
to operate the system-level tests without additional clutter. Should some
anomaly appear, you can turn on the block-level sequences again to ferret out
a bug.

In addition to the block-level sequences that come with the testbenches, we
have new system-level sequences that exercise the entire system. These are
instantiated in the top-level environment and connected to the appropriate
agents. These sequences represent additional functionality that uses the
connected elements; whereas, the block-level sequences assume only their
own environment.

Reusing Block-Level Testbenches 191

Figure 9-5 Connecting Testbenches

The code is surprisingly straightforward. There are only three components in
the top-level environment; the two subordinate testbenches and the HFPB-
FPU slave. Only the test sequence is invoked; it will invoke sequences in the
lower layers.

The FPU environment is the same as the one we saw in Chapter 7. It
instantiates the agent and the reference model, and it instantiates the

FPU BLOCK-LEVEL
TESTBENCH

LAYERED STIMULUS
GENERATION

PROCESSOR

HFPB
AGENT

MEMORY
SLAVE

COMPILER

HFPB
FPU

SLAVE

FPU
DUT

FPU
AGENT

HFPB
READ/WRITE

API

FPU-HFPB
TRANSPORT

API

FPU
RAND

SEQUENCE

FPU
REFERENCE

RAND
MEMORY

SEQ

HFPB
MEMORY

TESTBENCH

192 Reusing Block-Level Testbenches
sequence. The only difference is, we’ve added a configuration item,
run_sequences, which determines whether to run the block-level sequence.
This configuration switch lets the system-level testbench turn on or off the
block-level sequences. The run_sequences switch is also in the HFPB
environment for the same reason.

The build() function in the top-level environment has a number of things in
it. We’ll walk through them.

193 function void build();
194
195 set_config_int(“hfpb”, “run_sequences”, 1);
196 set_config_int(“fpu”, “run_sequences”, 0);
197
198 set_config_int(“*”, fpu_slave_name, 1);
199
200 addr_map.add_range(‘h000, ‘h00f, 1); // slave 1: fpu
201 addr_map.add_range(‘h010, ‘hfff, 0); // slave 0: mem
202
203 set_config_object(“*”, “addr_map”, addr_map, 0);
204 set_config_int(“*”, “rand_iterations”, 500);
205 set_config_int(“*”, “mem_lower_bound”, ‘h80);
206
207 hfpb = new(“hfpb”, this);
208 fpu = new(“fpu”, this);
209 fpu_slave = new(“fpu_slave”, this);
210
211 endfunction
file: 09_block_to_system/02_expr/top.sv

First, we turn on the run_sequences switches for the subordinate
environments. Next, we set the slave name for the FPU slave so that we can
map the name to a slave identifier. After that, we set up the address map. This
was moved from the HFPB environment to the top-level environment. The
address map is a global resource, and it must be set from a vantage point
where all the slaves are known. Next, we configure the randomized memory
sequence with the number of iterations to run and the lower bound of the
memory space it operates in. Finally, we instantiate the components.

The structure of the run() task should be familiar by now—we call global
stop_request() followed by a sequence invocation. The only difference is
the call to set_global_stop_timeout() before starting the sequences. The
reason for that call is that subordinate environments rely on their coverage
collectors to tell them when to stop. The global timeout instructs the stops to
be released after the timeout expires, regardless of whether all the stop()
tasks have returned.

Testing at the System Level 193
213 task run();
214 string s;
215
216 ovm_report_info(“env”, “start”);
217
218 seq = new();
219
220 set_global_stop_timeout(10ms);
221 global_stop_request();
222 seq.start(hfpb.agent.sequencer);
223
224 ovm_report_info(“env”, “finish”);
225
226 endtask
file: 09_block_to_system/02_expr/top.sv

The global timeout is a safety valve that prevents the system from going into
deadlock. If we turn off the block-level sequences, the system-level stimulus
may not cover the blocks as expected. This is okay from a functional testing
perspective, since the goal is to exercise the system, not specifically cover each
block. However, the coverage information is still useful, so we leave coverage
enabled. By setting the global stop timeout, we ensure that even if each
block’s coverage threshold is not reached, the system will terminate properly.

The top-level environment also participates in the global stop shutdown
mechanism.

230 task stop(string ph_name);
231 seq.wait_for_sequence_state(FINISHED);
232 endtask
file: 09_block_to_system/02_expr/top.sv

The stop() task waits until the sequence reaches the FINISHED state.
wait_for_sequence_state() is a blocking call that returns when the state
named in the argument is reached.

9.3 Testing at the System Level

The type of stimulus that we generate for system-level testing is different
from what we use for block-level testing. At the block level, we are concerned
about only a single block. At the system level, we have to consider the entire
system. Furthermore, the system is more than just a collection of blocks; it has
additional functionality implemented using the smaller blocks. When
designing tests for the complete system, it’s reasonable to assume that each
block has been tested thoroughly. After all, that’s what the block-level

194 Testing at the System Level
testbench is for. You can assume that the necessary does-it-work and are-we-
done questions were asked and answered satisfactorily.

So if each block is known to work correctly, then what’s left to test when they
are connected? Well, plenty. While the blocks themselves may have been
tested thoroughly, the interaction between them has not. It’s possible that a
legal state in one block coincident with a legal state in another block may, in
fact, constitute an illegal state. That is, a combination of states between each
block may not be permitted.

Depending on the nature of a particular block, it may not be possible to
exhaustively cover each and every state in a block. When designing the block-
level stimulus and coverage model, you must draw lines about what is
necessary to test and what is not. For example, in the FPU design, it’s not
possible to cover every possible value of the A and B operands. Each is 32 bits
for a total of 64 bits of operands. To generate all the unique values for 64 bits
would take considerable time. Further, there is the intuitive notion that it’s not
necessary to generate all those values. As a verification engineer, you have to
figure out which values are significant and which are not. Later, when you
integrate the block into a system, it’s entirely possible that components in the
system driving your block may pass it a value that was not tested at the block
level. Along those same lines, the particular sequence of state transitions that
the block takes may be somewhat different than what was exercised in the
block-level tests. In theory, the block-level tests have exercised everything of
significance. Yet it’s still possible that a combination will occur in a system test
that was not previously exercised.

It’s important to retain the block-level coverage collectors to see if anything
interesting, based on the coverage model, occurred in the system that did not
occur in the block-level tests. Along the same lines, it’s also important to keep
the block-level scoreboards in place. These models determine whether the
block functions correctly, which answers a does-it-work question. If they are
reliable, then they can continue to monitor the operation of a block to flag any
system-level failures. In the block-level testbenches in our example, the
scoreboard and coverage collectors remain in place and are active.

Our small system is driven by a software element that compiles expressions.
The stimulus we design for it must exercise the entire system and not
necessarily focus on any particular block. Since the system is designed to
parse and evaluate expressions, the stimulus problem becomes one of
generating expressions and then evaluating them. To do that, we have a
sequence that generates randomized ASCII strings, which represent valid
expressions. Those expressions are passed through the chain of sequences
until they become individual bus operations.

Summary 195
Figure 9-6 System-Level Chain of Sequences

The RAND EXPR sequence is the primary stimulus generator; it generates the
randomized expressions. It passes them to EXPR, which takes the source
string and passes it to the compiler, which parses it and converts it to a
program and a symbol table. A data structure containing the program and
data structure is passed to PROC, the processor, which executes the program.
In so doing, it generates both operand reads and writes and word reads and
writes. Operand reads and writes are converted to word reads and writes.
This chain of sequences, built on top of the combined testbench
infrastructure, represents our system functionality.

9.4 Summary

Integrating blocks into a system does not necessarily require rewriting
testbench components. When you encapsulate protocol elements into a single
agent and make sure that all components have well-defined interfaces, then
you can easily connect block-level elements to form a system-level testbench.
The block-level coverage collectors and scoreboards ensure that new,
previously unforeseen stimulus is still counted and validated. Having reliable
block-level testbench elements lets you focus on the system-level stimulus
generation and functionality.

RAND
EXPR

EXPR

COMPILER

PROC

R/W
OPERAND

R/W
WORD

196 Summary

10

Coding Conventions
Good code doesn’t happen by accident. It’s the product of a good architecture
and careful execution. Coding conventions can help improve the quality of
your code by giving clear advice on how to structure your code and make
sure the details are consistent.

10.1 Naming Scheme

Good quality code has a consistent look and feel. One of the ways to achieve a
consistent look and feel is to use a consistent naming scheme. This section
documents the naming scheme used for the examples in this book.

A name is constructed from three parts: the prefix, the main part, and the
suffix. The main part of the name may consist of one or more words. All the
parts—prefix, suffix, and words in the main part—are separated by
underscores. Some sample names follow.

The following name has a main part of fifo and a prefix of tlm.

tlm_fifo

The next one has all three parts, a prefix m_, a main part parent, and a suffix
_p.

m_parent_p

The following name has a main part with three words, but no suffix or prefix.

finite_state_machine

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_10,
© Mentor Graphics Corporation, 2009

198 Naming Scheme
The next name also has no suffix or prefix, but the main part (top) consists of
only one word.

top

The SystemVerilog OVM library is contained in a single package called
ovm_pkg. The classes inside that package are prefixed with either ovm_ or
tlm_. The reason for the tlm_ prefix is to match names in the OSCI TLM-1.0
standard which, of course, is rendered in SystemC.

When you construct names, avoid abbreviations, use complete words
whenever possible, and distinguish names by case. This method is called the
general naming scheme, and it forms the basis for the rest of the kind-specific
naming schemes. A name should also identify the kind of thing it’s naming.
Below are rules for specific kinds of names:

class names

Class names use the general naming scheme. Classes that are part
of a specific package or library should use the same prefix for all
members of the package or library.

ovm_analysis_port
tlm_fifo

local variables

Local variables use the general naming scheme but have no
prefix. They may have suffixes depending on the kind of object
being named.

integer indexes

Use i, j, k for integer indexes. This is one place where single
letter variable names are acceptable.

int i;
int j;
for(i = 0; i < last; i++)
{

for(j = i; j < last; j++)
matrix[i,j] = compute_entry(i,j);

}

class members

Class members are another form of local variable. Instead of
being local to a function or task, they are local to a class. To

Naming Scheme 199
distinguish class members from local variables in a function, task,
or method, use the local variable convention and add a prefix of
m_.

class pc_bus_request
addr_t m_address;
data_t m_data;
request_t m_request_type;

endclass : bus_request

class methods

For class methods, use a different prefix from the enclosing class,
and group common methods with the same prefix.

class pc_bus_request
addr_t m_address;
data_t m_data;
function set_addr(addr_t a);
endfunction
function set_data(addr_t a);
endfunction

endclass : pc_bus_request

local variables with suffixes

It greatly improves the readability of a program if you are able to
quickly understand something about the type or kind of object
you are looking at in an expression without having to refer to the
declaration.

pointers

Pointers appear in SystemC but not in SystemVerilog. Pointers
use the local variable naming scheme and have a suffix of _p.

handles

Handles appear in SystemVerilog but not in SystemC. All
instances of a class in SystemVerilog are referenced using class
handles. Use the local variable naming scheme, and if no other
suffix applies, add the _h suffix.

type names

For type names that are created with typedef, use the local
variable convention and add the _t suffix.

typedef unsigned long int addr_t;

200 Naming Scheme
typedef sc_lv<16> bus_t;
typedef sc_port< sc_signal_in_if< sc_uint<32> > >

 bus_in_port_t;
typedef struct {bit [7:0] value} data_t;

function/task/method names and formal arguments

Functions, tasks, and methods (and their formal arguments) use
the same convention as local variables—no prefixes or suffixes. A
formal argument may be abbreviated if the abbreviation is
derived from its type.

function send(trasanction_t t, string parent);

macros

Macros are all uppercase letters, and words are separated by
underscores. Distinguish between a macro and a named constant
in SystemC. Macros are simply text to be substituted at the
appropriate point in a program using a preprocessor. Named
constants are constant values with a name known to the compiler
and to the debugger.

#define MAX_SIZE 100
#define TRANSPORT(req,rsp) send(req);rsp=recv();

parameters

Parameters are all uppercase letters, and words are separated by
underscores. An abbreviation may be used if it is derived from its
type. In SystemVerilog, parameters or localparams are preferred
over macros to reduce order-of-compilation issues.

parameter type T = int;
localparam MAX_SIZE = 100;

enumeration types and enumeration members

Enums need a suffix only if used as a defined type. In that case,
use _e. For example:

typedef {mode_unidir, mode_bidir, mode_off} mode_e;

The members of enumerated types should have a common prefix
that indicates their type.

enum {color_red, color_blue, color_green} color;
typedef enum {req_read, req_write, req_idle} req_e;

Global or Local? 201
interfaces
modports have the _mp suffix
interfaces have the _if suffix
virtual interfaces have the _vif suffix

interface bus_if;
...
endinterface : bus_if

virtual bus_if bus_vif;

class bus_if : public sc_interface
{

161...
};

packages

Packages have the _pkg suffix. The main part of the package
name should be the basis for the prefix of the names within the
package.

ports

Transaction-level ports should use the same naming conventions
as formal arguments to a function. Transaction-level ports should
use the suffix _port or _export, as appropriate. Use _ap as a
suffix for analysis ports. If you have only one analysis port in a
module, which is quite common, just name it ap with no suffix or
prefix.

sc_export<control_if> ctrl_export;
analysis_port error_ap, good_ap;

10.2 Global or Local?

In an object-oriented program, it’s not always obvious in which scope to put
variables. For each variable, the answer to that question depends on the
lifetime of the variable and who will have access to it. In general, you want to
make variables that are in the inner-most scope possible and as local as
possible. The idea is that the more available you make variables, the more
likely some method, class, or module other than what you intend will modify
the variable, possibly with adverse consequences. This is a continuation of the
data-hiding concepts discussed in Chapter 2.

The remainder of this section offers guidelines to aid your decision-making
about where to put a declaration.

202 Global or Local?
Class Interfaces. The interface to a class, the methods that enable external
users to operate an object, should be public. Everything else should be local
(private). Variables should all be private. If it’s necessary to access them
externally, this should be done with accessor functions, functions whose entire
role is to provide read or write access to a class member. Consider as an
example the following code:

class some_class;

local int a;

function void set_a(int a_arg);
if(a_arg & 1) begin

$display(“a must be even”);
return;

end
a = a_arg;
endfunction

function int get_a();
return a;

endfunction

...
endclass

The class some_class has two accessor functions, set_a() and get_a().
These functions guarantee that the variable a is accessed in only the allowed
manner and no other way. set_a() guarantees that a is always set to an even
value. It’s not possible to set a to a value that’s not even.

There are some exceptions to the rule that all variables should be private. One
exception is for component ports and exports. These must be public so that
external components can connect to them. The internal variables of these
objects are private, so we still have preserved data-hiding. Another exception
is for transactions. This exception is more subjective, and application of
accessor functions should still be considered. The following transaction has a
number of internal fields.

class trans extends ovm_transaction;
bit [7:0] data
bit [15:0] addr;
int target;
operator_e op;
status_e status;

endclass

Global or Local? 203
Since the purpose of the transaction object is to deliver data from one
component to another, it can be a bit overly verbose and somewhat
inconvenient to create a set_*() function and a get_*() function for each
member. Providing both a set_target(), which assigns a value to target,
and get_target(), which retrieves a value from target, for example, is
semantically equivalent to just using assignment statements to modify or
retrieve the value of target. In that case, the accessor functions provide no
value. Consider a different example:

class packet extends ovm_transaction;
int target;
local bit [7:0] payload [255];
local bit [15:0] error_correction_code;

function void set_payload(bit [7:0] p [255]);
payload = p;
compute_error_correction_code();

endfunction

function bit [15:0] get_error_correction_code();
return error_correction_code;

endfunction
endclass

The class packet has a set_payload() accessor function, which not only sets
the value of payload, it also computes the error correction code associated
with the payload. The class does not provide a way to set the value of
error_correction_code, which is local, except by setting the payload and
computing a new error correction code. The set_payload() accessor is
responsible not only for assigning a variable, but also for computing another
(local) member in the class.

Loop Variables. It’s best to keep loop variables in the function in which they
are used, even in the loop scope. SystemVerilog provides a way to declare a
loop variable at the top of the loop in which it is used. You should use this
when you can.

for (int i; i < 100; i++) begin
...

end

Here, the loop variable is declared in the inner-most scope possible. If you
have several loops in the same function, it’s better to declare the loop
variables once and not have to repeat the declarations. Besides saving a bit of
typing, it guarantees that the type is consistent.

204 Objects
int unsigned i;

for(i = 0; i < max; i++) begin
...

end

for(i = 0; i < max; i++) begin
...

end

In any case, there’s no reason to declare loop variables as class members. They
should be in the function in which they are used. Even if you have multiple
functions with loops, declare the loop variables in the functions. This removes
the implication that the loop variables have anything to do with the other
members in the class. It also prevents sharing problems in the event tasks
with processes try to share the same loop variable.

Global Variables. Should you ever use global variables? Well, usually not. If
you find yourself making a variable global, think about it carefully before you
commit. The main problem with global variables is that they are not
threadsafe. That is, two threads can be updating a global variable,
unbeknownst to each other. Consider two threads, A and B, each of which
maintains a global variable called X. A computes a value for X and assigns it
to X accordingly. B now computes a new value and assigns it to X. Since A
believes X to be a different value, it can make some assumptions, which,
because X has changed values, are now wrong.

There are times when global variables make sense. In OVM, we have the
global report server, for example. It’s important for this variable to be global
because it must be accessible everywhere. We prevent multiple copies of the
report server from being created by making it a singleton object. We can get
away with it being global because the report server has only functions, no
tasks, so there is no possibility of any operation on the report server blocking
or consuming time. So, all operations can be considered atomic. All access to
the report server is through those functions, so there is no opportunity for
multiple clients to create a conflict by setting variables in unexpected ways.

10.3 Objects

The OVM base class library defines a collection of objects of various types.
This section presents some recommendations for coding those objects in a
consistent manner.

Objects 205
10.3.1 Components

Components, objects derived from ovm_component, are one of the essential
elements of an OVM testbench. Generally, your testbench will be constructed
as a collection of interconnected components. So, it’s important to organize
components consistently. Within components, the primary organization is the
set of phase callback functions. Schematically, it is best to organize
components by putting items in a well-defined order.

1. declaration macro(s)
2. external interfaces
3. internal channels
4. configuration items—variables whose values are obtained

through the configuration system
5. local variables
6. constructor
7. phase callbacks
8. local methods

Here’s an example:

class my_component extends ovm_component;

‘ovm_component_utils

// external interfaces
ovm_get_port#(trans) get_port;

// internal channels
tlm_fifo#(trans) fifo;

// configuration items
int unsigned size;

// local variables
int i, j;

// constructor
function new(string name, ovm_component parent);

super.new(name, parent);
endfunction

// phase callbacks
function void build();
endfunction

function void connect();
endfunction

206 Objects
function void end_of_elaboration();
endfunction

function void start_of_simulation();
endfunction

task run();
endtask

function void extract();
endfunction

function void check();
endfunction

function void report();
endfunction

// local methods
task send_to_bus();
endtask

endclass

The macro ‘ovm_component_utils generates some boilerplate code that is
useful in all components. It creates the following code:

Factory registration
get_type() function
get_type_name() function

For parameterized components, use ‘ovm_component_param_utils instead.
The difference is that ‘ovm_component_utils provides the
get_type_name() function and registers the component with the string-
based factory as well as the type-based factory. The
‘ovm_component_param_utils assumes that it’s not possible to create a
unique string for a parameterized class, so it doesn’t try. Instead, it just
registers the component with the type-based factory and creates the
get_type() function, but not the get_type_name() function.

Components have a standard constructor with a name and parent argument.
Resist the temptation to add parameters to the constructor. Instead, use the
configuration facility to pass data into a component. That way, you won’t
create an unnecessary dependency between a component and where it is
instantiated. Furthermore, the factory is set up to create components using
name and parent arguments, it currently does not support arbitrary
arguments.

Objects 207
The build() function is a good place to retrieve configuration items. Since
build is a top-down phase, it’s also a good place to set configuration
information to be passed to subordinate components. Construct your build
function with get_config_* calls first, followed by instantiations of
subordinate components, followed by set_config_* calls. Retrieving
configuration items before instantiating subordinate components allows you
to use the configuration information when constructing those components.
Thus, you can create configurable topologies.

10.3.2 Sequences

Sequences are another kind of object that will contain a lot of your testbench
code. Just like with components, organizing the code inside the class in a
consistent manner will help you and others reading the code to find things
and understand the structure easily. Code the items in a sequence in the
following order:

1. ‘ovm_sequence_utils macro
2. declaration for child sequences
3. local variables
4. pre_body() task
5. body() task
6. post_body() task
7. response handler
8. local methods

10.3.3 Transactions and Sequence Items

Components are persistent structural objects; that is, they are created at the
beginning of simulation and persist until the end. Sequences are semi-
persistent; they remain in place until the body() task completes. This could
be long enough to send a single sequence item or for the duration of the entire
simulation. Transactions and sequence items are transient. They carry
information between components and are released to be garbage collected
once they deliver their payload. During their trip through the system, these
objects can be copied, cloned, compared, or printed. So, they need methods to
perform these functions. The ingredients that go in sequence items and
transactions, in order, are:

1. ‘ovm_object_utils or ‘ovm_object_param_utils macro
2. this_type typedef
3. copy function
4. clone function
5. print function

208 Packages
6. compare function

The this_type typedef is useful for parameterized classes. You can use
this_type in all the places where the class type is needed, and doing so can
improve the clarity of the code in the case where there are multiple
parameters. For example:

class trans#(type T=int, type R=int, int unsigned I=0)
extends ovm_transaction;

typedef trans#(T, R, I) this_type;

...

endclass

Here’s what a prototypical transaction looks like:

class transaction#(type T=int) extends ovm_transaction;

typedef transaction#(T) this_type;

// declare transaction members here

function ovm_object clone();
this_type t = new;
t.copy(this);
return t;

endfunction

function void copy(input this_type t);
endfunction

function bit comp(input this_type t);
endfunction

function string sprint();

string s;
$sformat(s, ...);
return s;

endfunction

endclass

10.4 Packages

Packages in SystemVerilog provide a means for creating distinct namespaces.
This is a powerful tool for managing large bodies of code. You can collect
groups of related classes and types and make them available as single entities.

Packages 209
Using packages, you can maintain separation between these groups. You can
hide objects and types that are needed for the implementation of the visible
members but themselves are not visible. Use packages liberally to prevent
unintentional interactions among objects and to simplify things for those who
use your testbench components.

The package name itself is in the global namespace, but the items contained
inside the package are in their own namespace. To make an item (or symbol)
visible outside the package, you must import it. For example, to import an
item called driver from my_package, use the following statement.

import my_package::driver;

To import all the symbols in my_package, use an asterisk (*).

import my_package::*;

This approach provides considerable control over the visibility of symbols
and makes it obvious in programs that use packages whose symbols are “in
play.”

Even though the package forms a namespace, prefix all the symbols that will
be visible externally (that is, those that users can import) with a common
prefix. For example, all of the symbols in the OVM package have the prefix
ovm_ (with a few minor exceptions).

All of the components for a protocol should logically be grouped together,
and you can use a package to form this grouping. The package can also
contain any types or objects that are shared among the components in the
package and which may not be externally visible. A good way to achieve this
objective is to put each component in a single file and to ‘include those files
in a package shell.

package abc_pkg;
‘include “abc_common.svh”
‘include “abc_driver.svh”
‘include “abc_monitor.svh”
‘include “abc_agent.svh”

endpackage

The package shell is put into its own file. The file abc_common.svh contains
code that is common among the other components in the packages but might
not be used directly by the user of the package.

210 Comments
10.5 Comments

Comments are the most subjective of coding style elements. Most
programmers have their own feelings about what makes a good comment
style. However you use comments, they should enhance the clarity and
readability of the code and not obfuscate it. Here are some simple rules for
making comments enhance your code and not detract from it.

Don’t replicate code in your comments. In other words, don’t
state the obvious.

The comment here is unnecessary:

// Add one to counter
counter = counter + 1

Put a comment header on each class and on major functions, par-
ticularly interface methods in classes.

This is a convenient place to summarize the role of the class or
method and an obvious place to look when reading code to find
out what the class or method does.

//--
// env
//
// Top-level environment. Contains the bus agent and
// instantiates the test.
//--
class env extends ovm_component;
...
endclass

Explain passages that implement complex or non-obvious algo-
rithms.

When you look at code that you have written and you find
yourself having to spend a few minutes to reconstruct your
thinking in order to understand what a particular passage is
doing, then it is likely that this piece of code warrants a comment.

10.6 Summary

A good coding style that includes conventions for data and file names; use of
globals, constants, statics, ports and exports; and all the other ingredients
discussed in this chapter contributes to making the code accessible and can
greatly aid the integration of code written by different programmers. When

Summary 211
multiple engineers are working together on the same project, agreed-upon
conventions will save considerable time and stress when it’s time to combine
the ingredients in a single recipe (system).

Just like any writing, when you apply a consistent style to your code, you
improve the ability for someone reading it to understand it quickly and
accurately. That person might be you!

212 Summary

Afterword
Verifying a complex system is a non-trivial problem. It requires a deep
understanding of software engineering and electrical engineering, as well as
extensive knowledge of the system being verified and the protocols it uses to
communicate with the external world. Additionally, it requires some
creativity and guile to design tests that effectively exercise the DUT to prove
that it works correctly.

This text has presented the essential elements of the OVM—components,
transaction-level interfaces, ports and exports, sequences, and so forth—that
you can use to design and construct testbenches. The OVM is not just a library
of parts; it is also a methodology for approaching complex verification
problems. However, the methodology is just a starting point. There is a lot of
room for creative application of the OVM. Every design house and design
team has its own styles and conventions for building systems, and every
design, even those derived from other designs, has its own unique
verification challenges. So testbench architectures will vary widely based on
the nature of the design, the verification requirements, the culture and
training of the verification team, and the history of the project.

The methods and techniques expressed in this text are not dogma; rather they
are a conceptual framework for experimentation and development of new
methods and techniques. I encourage readers to explore new ways to apply
the OVM to your own verification problems. Further, I encourage readers to
exchange ideas on www.ovmworld.org. Open discussion and exchange will
help to advance the OVM, which in turn will help to improve verification
practice.

The Verification Methodology team at Mentor Graphics closely monitors the
discussion on www.ovmworld.org and will respond to questions and bug
reports and will participate in discussions there. If you wish to communicate
directly with the team, you can do so by sending E-mail to
OVM_Cookbook@mentor.com.

214

A

Graphic Notation
Throughout this book we illustrate examples with diagrams that show
verification components and their interconnections. We use a schematic-like
notation for these diagrams that combines both data flow and control flow
concepts.

Traditional RTL schematic notation is data-flow oriented. Components have
pins connected by nets. Pins have direction—they can be inputs, outputs, or
bidirectional—and they must be connected to other compatible pins. For
example, an output of one component must be connected to an input of
another component. In systems that have transaction-level components, we
need to describe control flow as well as data flow. Transaction-level models are
constructed of function calls. Activity generated as functions in one
component will call functions in other components. Control flow refers to
who calls whom.

Connecting separate components through well-defined interfaces is a key
tenet of the OVM, and those ideas are reflected in our notation. The graphical
notation has three parts: components, interfaces, and interconnect.

A.1 Components

A component is represented using a box.

216 Interfaces
Figure A-1 Component Symbol

Components are objects such as modules, interfaces, program blocks, or
classes that can be instantiated. Components often have free running threads.
Sometimes, knowing the location of threads in a design or testbench is
important to understanding the design. To show a component that has one or
more threads, we use a circular arrow.

Figure A-2 A Component with a Thread

A.2 Interfaces

Interfaces are the externally visible connections to components. All of a
component’s behavior is accessible and visible only through its interfaces.
First, is the familiar pin interface.

Figure A-3 A Component with a Pin Interface

The small black boxes on the right side of the component represent pins.

Interconnect 217
Whereas pin interfaces move data represented at the bit level between
components, transaction interfaces move high-level data between
components.

Figure A-4 Transaction-Level Interfaces

Figure A-4 represents two variations of transaction interfaces: a port and an
export. The component on the left has a transaction port and the component
on the right has an export. An export represents the provides sides of an
interface and a port represents the requires side. A good way to think about
transaction ports is as a set of unresolved function calls that are resolved by
exports. Ports and exports are complements of each other; ports connect to
exports. You cannot connect an export to an export or a port to a port.

The port/export notation identifies the flow of control between components.
Since a port interface calls functions on an export, flow of control moves from
ports to exports.

A.3 Interconnect

Just like with traditional schematics, we use lines between interfaces to show
the interconnection amongst components. The addition of arrow heads
allows us to represent data flow.

Figure A-5 Pin-Level Data Flow

exportport

A B

218 Channels
Arrows between pins show the direction data flows between components.
The figure above shows, from top to bottom, flow from A to B, bidirectional
flow between A and B, and flow from B to A.

Figure A-6 Transaction Data Flow

Figure A-6 illustrates two configurations, each with the same transaction
interfaces, but with different data flow. In both configurations, a function in B
is invoked by A; that is, A initiates activity in B. A is the initiator and B is the
target. In the top configuration, A moves data to B. This is called a put
operation. In the bottom configuration, A moves data from B back to itself.
This is called a get operation.

A.4 Channels

Transaction-level components often communicate through channels. A
channel is a component that defines the semantics of the communication. One
of the most common channels used is a FIFO. FIFOs are used to throttle

A B

A B

put configuration

get configuration

Analysis Ports 219
communication between two transaction-level components. To show this in a
netlist, we show a small box between components to represent the FIFO.

Figure A-7 Two Components Communicating through a FIFO

A FIFO, as with other communication channels, exports an interface.
However, in the interest of keeping the diagram uncluttered, the circles on the
channel exports are optional and often omitted. Just like vowels in Hebrew,
exported interfaces on channels are obvious to conversant readers.

Figure A-7 shows two components, each with its own thread, and each with a
transaction port that connects to an intervening channel. Component A puts
transactions into the FIFO channel, and component B gets transactions from
the same channel. The data flow arrows, in addition to the transaction ports,
tell us which components are doing gets and which are doing puts. A has a
thread, a transaction port (as opposed to an export), and an arrow leading
away from it. That tells us that A is putting transactions into the channel. B
also has a thread and a transaction port, but the data flow arrow is leading
into the component instead of away from it. That tells us that B is getting
transactions from the channel.

A.5 Analysis Ports

Analysis ports are a kind of transaction-level port used for communicating
information between components involved in the operation of the DUT and
components used to analyze activity. The symbol for an analysis port is a
diamond. Analysis ports are connected to a component with an analysis

fifo `

A B

220 Summary
interface. This could be an analysis FIFO or a component with an analysis
interface.

Figure A-8 Analysis Port Connected to an Analysis Interface

A.6 Summary

The OVM graphic notation is an extension to traditional RTL schematic
notation. The extensions let us show transaction-level components, such as
initiators, targets, interfaces, and channels, along with control and data flow
between components. Using this notation, we can combine transaction-level
and RTL components on the same diagram, which is important for
diagramming testbenches.

A B

Analysis port

Analysis interface

Bibliography
Standards
1. IEEE standard 1800-2005, IEEE Standard for SystemVerilog Unified

Hardware Design, Specification, and Verification Language, Novem-
ber 2005.

2. IEEE, standard 1666-2005, IEEE Standard SystemC Language Refer-
ence Manual, March 2006.

3. Open SystemC Initiative, OSCI TLM-1.0 Transaction Level Model-
ing Standard. SystemC kit with white paper available on http://
www.systemc.org.

Functional Verification
4. Janick Bergeron, Writing Testbenches: Functional Verification of HDL

Models, Second edition, Kluwer Academic Publishers, 2003.
5. Andreas S. Meyer, Principles of Functional Verification, Elsevier Sci-

ence, 2004.
6. Harry D. Foster, Adam C. Krolnik, David J. Lacey, Assertion-Based

Design, 2nd Edition, Kluwer Academic Publishers, 2004.
7. Chris Spear, SystemVerilog for Verification: A Guide to Learning the

Testbench Language Features, Springer 2006

SystemC
8. Thorsten Grotker, Stan Liao, Grant Martin, Stuart Swan, System

Design with SystemC, Kluwer Academic Publishers, 2002.
9. David C. Black and Jack Donovan, SystemC: From the Ground Up,

Kluwer Academic Publishers, 2004.
10. J. Bhasker, A SystemC Primer, Star Galaxy Publishing, 2002.
11. Frank Ghenassia (ed.), Transaction-Level Modeling with SystemC:

TLM Concepts and Applications for Embedded Systems, Springer,
2005.

C++ and Object-Oriented Programming
12. Stanley B. Lippman, Inside the C++ Object Model, Addison-Wesley,

1996
13. Bjarne Stroustrup, The C++ Programming Language, Third Edition,

Addison-Wesley, 1997.
14. Gregory Satir, Doug Brown, C++: The Core Language, O’Reilly &

Associates, Inc., 1995.

222
15. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

16. Andrei Alexandrescu, Modern C++ Design: Generic Programming
and Design Patterns Applied, Addison-Wesley, 2001.

17. Martin Fowler, UML Distilled: a brief guide to the Standard Object
Modeling Language, Third Edition, Addison-Wesley, 2004

Programming Style
18. Steve McConnell, Code Complete, Second Edition, Microsoft Press,

2004.
19. Herb Sutter, Andrei Alexandrescu, C++ Coding Standards: 101

Rules, Guidelines, and Best Practices, Addison-Wesley, 2005.

Miscellaneous
20. Niklaus Wirth, Algorithms + Data Structures = Programs, Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1976

Index
Symbols

_ap suffix, as a naming convention 201
_e suffix, as a naming convention 200
_export suffix, as a naming convention

201
_h suffix, as a naming convention 199
_if suffix, as a naming convention 201
_mp suffix, as a naming convention 201
_p suffix, as a naming convention 199
_pkg suffix, as a naming convention 201
_port suffix, as a naming convention

201
_t suffix, as a naming convention 199
_vif suffix, as a naming convention 201
‘ovm_component_param_utils

macro, generating boilerplate code
with 206

‘ovm_component_utils macro,
generating boilerplate code with 206

‘ovm_object_param_utils macro,
in sequence items and transactions 207

‘ovm_object_utils macro, in
sequence items and transactions 207

‘ovm_sequence_utils macro,
ordering for sequence 207

A

abstract definition
for data 50
for functions 51
for time 50

abstract factories, definition of 90
abstraction roles

in design 49
in programming 28

access control
for members 30
importance of 32

accessor functions
example of 202, 203
role of 202

agents
components of 143
configuring 147
creating internal structure of 143
customizing for reuse 142
example of 141, 148
external connections to 144
forms of 141
internal objects of 144
role in reuse 141, 142, 187

analysis components
See also subscribers
coverage collectors, definition of 22
definition of 22
role of 132
scoreboards, definition of 22

analysis domain
moving data into 23
role of 23, 132

analysis FIFO
definition of 24
role of 133

analysis interfaces, role of 132
analysis ports

definition of 23
naming convention for 201
notation for 219
role of 24, 132

are-we-done questions
automating answers 10
determining the answer to 7
developing 7
driving verification flow with 4
example of 7
role of coverage collectors 154
using thresholds to answer 8

associative arrays, storing component
children in 71

AVM, difference from OVM 79

224
B

base class library objects, coding 204
bidirectional data flow, in transport

interfaces 67
bidirectional interfaces, master and slave

59
binding functions, with a virtual table 40
blocking calls, definition of 61
blocking get, example of 64
blocking interfaces

definition of 61
role of 64

blocking put, example of 64
blocks

connecting, with a bridge 190
deciding what to test 194
definition of 185
testing interactions between 194

build(), description of 80
building examples xi
bus protocols, bidirectional 175

C

channels
analysis FIFOs, definition of 24
definition of 68
example of 75, 121
for communication 64
notation for 218
role of, in TLM 49, 50

check(), description of 80
class interfaces

enforcing access through 32
scope of variables in 202

class members, naming convention for
198

class methods, naming convention for
199

class parameters, introduction to 42
classes

comparison of features in Verilog,
SystemVerilog, and C++ 46

definition of 29

distinguishing from objects 29
example of 29, 30
interface and implementation of 32
naming convention for 198
role in components 69
role in OOP 30
uses of 30

clock generators
example of 18
using in scoreboard 18

combinational vs. synchronous designs
14

comments, coding guidelines for 210
communication channels

See also channels
definition of 218

communication, between components 73
compile-time parameter, See class

parameters
component hierarchy, example of 69
component, instantiating 81
components

analysis, definition of 22
children of

and associative arrays 71
retrieving names of 72

communication between 73
connecting 73
creating 69
definition of 69
environment, definition of 21
example configuration of 88
instantiating 70, 71, 88
leaves, definition of 70
nodes, identifying 70
orphans, handling of 73
phases of 79
retrieving name of 70
root, definition of 70
singleton, benefits of 73

concentric testbench organization 21
configs

applying functions of 87
applying to children 85
constructing 84
description of
functions, list of 84
how to use 87

225
role in reuse 83
role of 87
searching for 84
specifying with build() 207

configuration facility
error and consistency checking 146
example of 145
implementing for reuse 138
role in reuse 136

configuration items, See configs
configuration parameters, example of

145
connect calls, order of 79
connect method, binding ports and

exports with 74
connect()

and delayed binding 79
description of 80

connecting, with delayed binding 79
constructors, parameters of 70
control and configuration interfaces, role

of 24
control flow

and port connections 78
description of 215
in transaction-level connections 67

control modules, example of 17
controllers

and the analysis domain 23
definition of 23
using in testbenches 17

cookbook kit
downloading x
installing xi

counters
3-bit 15
modeled in scoreboard 18
n-bit 14

coverage
through elimination 15
through pruning 14
using extract phase for 80

coverage collection, See coverage
collectors

coverage collectors
and the analysis domain 23
constructing 154
definition of 22

example of 155
example write function for 155
in system-level tests 194
role of 154, 155

covergroup construct, role of 154
covergroups

example of 155
role of 154

D

Dahl, Ole-Johan 47
data

abstracting 50
form in TLM 50

data and control, separating for state
reduction 15

data flow
description of 215
in transaction-level connections 67
notation for 217

data objects, role of 28
deadlock, preventing 103
delayed binding, support for 79
depth-first traversal, implementing 72
derived classes

example of 37
overriding behavior with 36

design intent
capturing 10
verifying 3

Design Patterns (book) 90
design under test

See also DUT
definition of 3

Dijkstra, Edsger 29
directed stimulus, example of 11
does-it-work questions

automating answers 10
building in success criteria 6
determining functional correctness

with 4
developing 6
driving verification flow with 4
example of 4, 5
role of scoreboard 159

226
wording correctly 6
domains

analysis, composition of 23
moving data between 23
operational, definition of 23

downcasting, example of 98
downloading cookbook kit x
downloading OVM kit x
drivers

and the operational domain 23
bidirectional, example of 176
communicating with sequencers

166, 168, 173
comparing to masters 144
connecting to sequencers 170
definition of 21
example of 167, 169
implementing 121
instantiating in sequence config 167
role of 121
transferring sequence items 170

DUT
and the operational domain 23
as key element in testbench 11
definition of 3
example of 11
role in OVM testbench 19
scoreboard, relationship with 12, 14

DUT interfaces, definition of 54

E

end_of_elaboration(), description
of 80

enum, naming convention for 200
environment components

definition of 21
masters, definition of 22
slaves, definition of 22
stimulus generators

definition of 22
environments

definition of 66
relationship to tests 111

ERROR messages, effect on testbench 112
example designs

3-bit counters 15
AND gate 9
combinational 12

examples in OVM cookbook, building
and running xi

export notation, description of 217
exports

binding to ports 74
description of 217
notation for 217

extends keyword, identifying
inheritance with 36

extract(), description of 80

F

factories
base classes, support for 96
creating an instance of 92
example of 91
exercising, example of 95
implementing 90
operations, with wrappers 93
origin of the term 90
overrides, adding 93
referring to static functions in 95
registering classes with 95
role of 89, 90
string-based

definition of 96
drawbacks of using 99
rationale for using 99
registering with 99

type-based
definition of 96
drawbacks of using 100
rationale for using 99

verifying objects of 92
wrappers for 90

factory method, definition of 90
FATAL messages, effect on testbench 112
field_name, usage 84
FIFO channels

See also FIFOs
description of 64

FIFOs

227
analysis, definition of 133
notation for 218
tlm_fifo, example of 65
using as synchronizers 64
using environments to connect 66
using for requests and responses 122

filenames, for messages 113
forum, for OVM 213
FPU example

agent’s role in reuse 158
creating an agent for 158
function of 157
introduction to 156
making it reusable 158
organization of agent 158
ways of driving transactions 159

full_name, for nodes, constructing 70
function calls, role in reuse 135
functional correctness, determining with

does-it-work questions 4
functional coverage questions

decomposing 7
developing 7

functional specification, deriving
verification plans with 8

functional verification
basic principles of 10
definition of 3

functions
abstracting 51
naming convention for 200

functor, definition of 165

G

Gang of Four 90
generator question, example of 6
generic classes, creating 42
generic code

building, with C++ templates 41
building, with SystemVerilog

parameterized classes 41
generic components, reusing 41
get, definition of 57, 218
get_config

functions, constructing 84

functions, role of 84
operation of 86

get_if, example of 57, 58
get_sequence_path(), purpose of

172
global variables, determining when to

use 204
Grötker, Thorsten 49

H

handles, naming convention for 199
Harry Foster Peripheral Bus, See HFPB

protocol
HAS-A relationship, definition of 33
HFPB protocol

agent components 143
driver, description of 130
introduction to 125
master, example of 137
master-slave, connections in 125
monitor, description of 133
slave, description of 131
state machine for 126

hierarchical boundaries, connecting 74
hierarchical connections, calling order

for 78
hierarchy

depth-first traversal of 72
naming convention for 70
of classes, creating 71
path names, creating 70
traversing 72

I

id, for messages, definition of 112
infix, definition of 189
inheritance

definition of 136
example of 35
rationale for 36
role in reuse 136
using to create objects 34

228
with IS-A relationship 34
inheritance tree, example of 35
initiators

definition of 218
example of 57

installing cookbook kit xi
integer indexes, naming convention for

198
intent, designer’s 3
interconnect, notation for 217
interface header, description of 105
interface object technique

and set_vif(), comparison of 110
description of 108
rationale for using 110

interfaces
analysis, role of 132
bidirectional, description of 59
blocking

definition of 61
role of 64

class
enforcing access through 32
scope of variables in 202

control and configuration, role of 24
DUT, definition of 54
naming convention for 201
nonblocking

definition of 61
role of 64

notation for 216
object, definition of 53
pure virtual, definition of 53
role in reuse 135
SystemVerilog, definition of 52
virtual

connecting to RTL with 104
definition of 46
example of 55, 57, 59, 61, 104,

107
passing through 107
putting in configuration database

108
retrieving 109
using interface object technique

for 108, 110
IS-A relationship

definition of 34

example of 35, 36
expressing with UML 35

L

layered testbench architecture 20
leaves, definition of 70
Liao, Stan 49
library, definition of 28
line numbers, for messages 113
Lippman, Stanley 40
local variables, naming convention for

198, 199
loop variables

example of 203
scope of variables in 203

M

m_ prefix, as a naming convention 199
m_sequencer, role of 172
macros

See also macro names (‘ovm_*)
declaration, ordering for testbench

205
naming convention for 200

Martin, Grant 49
masters

comparing to drivers 144
definition of 22
example of 59
in bidirectional interfaces 59
linkage to slave 60

max_quit_count, changing 113
maximizer parameterized class,

definition of 41
members

access control for 30
example of 30
in classes 29
local, example of 32

memory masters, example of 121, 123
memory slaves, example of 121, 124
messages

229
body 112
controlling and issuing 112
filenames for 113
filtering, with verbosity 112
generating and filtering 111
id

associated actions, description of
113

definition of 112
line number, role of 113
printing 112
reporting 116
saving to file 114
severity

associated actions, description of
113

default actions, description of
114

effects of 112
verbosity 112

methods
example of 30, 32
in classes 29
naming convention for 200

models of computation, definition of 49
models, improving robustness of 89
modports

description of 105
for monitor devices 106
for slave devices 106

modules
See also components
control, example of 17
scoreboard, example of 18

monitors
and the analysis domain 23
definition of 21
implementing 121
role of 121

N

naming conventions
analysis ports 201
class members 198
class methods 199

class names 198
enums 200
functions, tasks, and methods 200
general naming scheme 198
guidelines for 198
handles 199
integer indexes 198
interfaces 201
local variables 198, 199
macros 200
name parts 197
packages 201
parameters 200
pointers 199
ports 201
type names 199

new(), description of 80
nonblocking calls, definition of 61
nonblocking get, example of 130
nonblocking interfaces

definition of 61
role of 64

nonblocking put, example of 130
nonpipelined bus example, table of

signals used in 125
notation

for analysis ports 219
for channels 218
for data flow 217
for initiators 218
for interconnect 217
for interfaces 216
for targets 218
importance of 215

Nygaard, Kristen 47

O

object interfaces, definition of 53
object-oriented inheritance, example of

137
object-oriented programming, See OOP
objects, distinguishing from classes 29
observer pattern, definition of 132
OOP

classes, role of 29, 30

230
data objects, role of 28
definition of 27
HAS-A relationship, definition of 33
IS-A relationship, definition of 34
object relationships, power of 33
program functionality, separating

29
rationale for use 48
Simula 67 47

operands, transmitting 182
operational components, definition of 21
operational domains

definition of 23
moving data out of 23

orphans, definition of 73
OVM factory, See factories
OVM kit, downloading x
OVM phase controller, role of 79
OVM phases

and phase callbacks 79
build, role of 80
callbacks, example of 81
check, role of 80
connect, role of 80
end_of_elaboration, role of 80
extract, role of 80
new, role of 80
order of 80
predefined 79
purposes of 80
report, role of 80
run, role of 80
start_of_simulation, role of 80
using config in 87

OVM, description of viii, 19
ovm_ prefix

as a naming convention 209
for classes 198

ovm_in_order_comparator#,
comparing with 42

ovm_pkg SystemVerilog libraries,
compiling x

ovm_report_handler
description of 114
example of 114

ovm_report_object, description of
111

ovm_test, description of 110

ovm_threaded_component
description of 65
example of 65

P

p_sequencer
declarations of 172
role of 172

packages
guidelines for use 208
importing symbols in 209
naming convention for 201

parameterized classes
building generic code with 41
example of 41
maximizer, definition of 41
role in reuse 136

parameterized components
benefits of 139
example of 139

parameters
See also configs
naming convention for 200

parametrized characteristics,
introduction to 42

parent argument null, for orphans 73
path names

in component hierarchy 70
in configs 85

phase callbacks, in OVM 79
phased build process, See phases
phases

and phase callbacks 79
build, role of 80
callbacks, example of 81
check, role of 80
connect, role of 80
end_of_elaboration, role of 80
extract, role of 80
new, role of 80
order of 80
predefined 79
purposes of 80
report, role of 80
run, role of 80

231
setting timeout for 103
start_of_simulation, role of 80
using config in 87

pointers, naming convention for 199
polymorphic constructor, definition of

90
polymorphism, definition of 37
port notation, description of 217
ports

binding to exports 74
connecting 78
description of 217
hierarchy of connections 78
naming convention for 201
notation for 217

procedural programming, limitations of
27

program functionality, separating for
OOP 29

pruning, to achieve coverage 14
publishers

relationship with subscribers 132
role of 24, 132

pure virtual interfaces, definition of 53
put

definition of 54, 218
example of 54

put_port, definition of 55

R

rand_avail, example of 62
reference models

in testbenches 11
purpose of 3

report handlers
example of 114
example usage for 115

report hooks
altering control flow with 117
enabling 117, 118
return values 118
running 119

report(), description of 80
reporting

altering control flow

with actions 116
with hooks 117

changing
example of 115
methods for 116

functions of 111
responders

and the operational domain 23
definition of 21

response handlers
rationale for 179
role of 177

reusable stimulus generators, building
165

reuse
access control, role in 32
agents, role of 141, 142
block-level components, building

for 185
class interfaces, role in 32
classes, role in 30
configs, role of
customizing agents for 142
data objects, role of 28
example of 129
interface, role of 135
library, role of 28
object-oriented inheritance, benefits

of 137
parameterized components,

rationale for 139
sequences, role of 181
stimulus generation elements,

building for reuse 165
subroutines, role of 27
testbenches

example of 187
for multiple tests 110

verification productivity, effects on
27

with generic components 41
with OOP 48

reuse techniques
configuration facility, definition of

136
function calls, definition of 135
inheritance, role of 136
parameterized classes, definition of

232
136
SystemVerilog templates, role of 136

reusing testbenches, for multiple tests
110

root, definition of 70
RTL and TLM comparisons

function 51
time 50

run(), description of 80
running examples xi
run-time parameter, example of 44

S

scoreboards
and the analysis domain 23
as key element in testbench 11
definition of 22
in 3-bit counter 18
in first testbench 12
in system-level tests 194
interpreting messages from 13
role of 11, 12, 13, 159
structure of 12

separation of concerns, and OOP 29, 40
seq_item_pull, methods of 168
sequence communication, description of

170
sequence configurations

components of 166
example of 167

sequence items
definition of 165
description of 170

sequence-based APIs, rationale for 182
sequencers

communicating with drivers 166,
168, 173

connecting to drivers 170
control flow example of 177
definition of 166
description of 171
for bidirectional bus protocols 175
instantiating in a sequence config

167
organization of 171

role of 166
sequences

building APIs with 182
chains of, testing 194
composition of 171
definition of 165
description of 171
example of 167
functions of 172, 181
hierarchy of 172
ingredients in 207
lifetime of 173
organization of 171
organizing code in 207
parallel

example of 179
order of execution 180
rationale for 181
role of 179

parameterizing, example of 183
role in reuse 181, 187
synchronizing 170
system-level, role of 190
transferring sequence items 170

sequential designs
example of 15
structure of 14
verification of 14

sequential devices, verification of 14
set_config_* functions

constructing 84
role of 84

set_vif()
and interface object technique,

comparison of 110
example of 107

severity, for messages 112
shut-down, for testbenches 100, 116
Simula 67 47
simulation deadlock, preventing 103
simulation shutdown, coverage collector

role in 155
singleton objects

benefits of 73
definition of 73

slaves
definition of 22
example of 59, 60

233
in bidirectional interfaces 59
linkage to master 60

specialization, of parameterized classes
definition of 136
example of 139

specializations, creating with parameters
41

stacks
definition of 30
example of 30

standard constructor, in components 206
start_of_simulation(),

description of 80
stimulus generation elements, building

165
stimulus generators

as key element in testbench 11
definition of 22
example of 11

stimulus, for system-level testing 193
stop() task

description of 100
during shut-down 101

string-based factories
creation step 98
definition of 96
drawbacks of using 99
implementing 98
rationale for using 99
registering with 99
registration step 98
setting overrides step 98
using $cast with 98

sub_component, instantiating 81
subroutine, importance of 27
subscribers

See also analysis components
behavior of 133
in data communication 24
role of 132, 154

success criteria, building into does-it-
work questions 6

Swan, Stuart 49
synchronous (sequential) designs,

verification of 14
system-level testing, stimulus for 193
SystemVerilog interfaces, definition of 52
SystemVerilog libraries, compiling x

T

talker, definition of 149
target

definition of 218
example of 58

task phase, predefined 80
tasks

naming convention for 200
setting timeout for 103

templates (C++)
building generic code with 41
role in reuse 136

test plans
creating 8
developing are-we-done questions 7
developing does-it-work questions

6
reaching thresholds in 8

testbench examples
scoreboard 12
simple 9
with state data 13

testbench shutdown, coverage collector
role in 155

testbenches
basics of 9
building 1
building, with components 69
configuring and instantiating 110
connected, example of 191
connecting, for reuse 187
elements of 15
example of 186
for 3-bit counter 17
instantiating, example of 106
layers of 19
ordering components, example of

205
organizing, with components 205
reusing 187, 190
sharing between blocks and systems

185
shutting down

blocking shutdown 100
by altering control flow 116
example of 100

234
method for 100
supporting verification plan with 5
turning off and on 191

tests
controllers, role of 23
initial block, role of 106
managing 110
relationship to environment 111
role of analysis components in 22

this_type, use in parameterized
classes 208

threshold for comparison, identifying
with coverage questions 8

time, abstracting 50
timeouts

global, example of 192
setting 103

TLM and RTL comparisons
function 51
time 50

tlm prefix, rationale for 198
TLM transactions, definition of 51
TLM, introduction to 49
tlm_fifo, example of 65
top, example of 13
transaction communication

forms of 54
get, definition of 57
put, definition of 54
transport, definition of 58

transaction data type, in transaction-
level connections 67

transaction ports
analysis ports, definition of 23
example of 219
exports, description of 217
ports, description of 217

transaction-level components, definition
of 21

transaction-level connections
description of 67
elements of 67
SystemVerilog example of 67

transaction-level modeling
introduction to 49, 50
transactions, definition of 51

transactions
and coverage collectors 22

definition of 51
example of 208
hardware-oriented perspective of 51
ingredients in 207
software-oriented perspective of 52

transactors
and the analysis domain 23
definition of 21
drivers, definition of 21
monitors, definition of 21
responder, definition of 21

transport channels, example of 121
transport taps

description of 152
example of 153

transports
definition of 58
example of 59

two-loop verification flow,
implementing 8

type handles, for wrappers 94
type names, naming convention for 199
type parameters, example of 41
type-based factories

creation step 97
definition of 96
drawbacks of using 100
implementing 96
rationale for using 99
registration step 97
setting overrides step 97

U

UML
definition of 33
expressing IS-A relationship with 35

Unified Modeling Language
definition of 33
expressing IS-A relationship with 35

V

variables, determining scope of 201

235
verbosity level, for messages 112
verification components, levels of 20
verification flow

two-loop flow 8
using are-we-done questions 4
using does-it-work questions 4

verification plans
building 5
deciding what to test 194
removing unreachable states from

15
verification process, structuring 3
verification, basic principles of 10
virtual functions

and polymorphism 37
example of 38
example program with 39
role of 36, 37

virtual interfaces
connecting to RTL with 104
definition of 46
example of 55, 57, 59, 61, 104, 107
passing through 107
putting in configuration database

108
retrieving 109
using interface object technique for

108, 110
virtual tables, purpose of 40
virtual tasks, example of 55
vsim.do simulator command, running

examples with xi

W

WARNING messages, effect on testbench
112

Wirth, Niklaus 28
wrapper

description of 93
functions in 94
specializing with typedef 94
type handles for 94

write(), in analysis domain 24
www.ovmworld.org forum 213

236

	Preface
	Contents
	List of Figures
	Introduction
	1
	1.1 Verification Basics
	1.1.1 Two Questions
	1.1.2 Does It Work?
	1.1.3 Are We Done?
	1.1.4 Two-Loop Flow

	1.2 First Testbench
	1.2.1 DUT
	1.2.2 Scoreboard

	1.3 Second Testbench
	1.3.1 3-Bit Counter

	1.4 Layered Organization of Testbenches
	1.4.1 Transactors
	1.4.2 Operational Components
	1.4.3 Analysis Components
	1.4.4 Controller

	1.5 Two Domains
	1.6 Summary

	2
	2.1 Procedural vs. OOP
	2.2 Classes and Objects
	2.3 Object Relationships
	2.3.1 HAS-A
	2.3.2 IS-A

	2.4 Virtual Functions and Polymorphism
	2.5 Generic Programming
	2.5.1 Generic Stack

	2.6 Classes and Modules
	2.7 OOP and Verification

	3
	3.1 Abstraction
	3.2 Definition of a Transaction
	3.3 Interfaces
	3.4 TLM Idioms
	3.4.1 Put
	3.4.2 Get
	3.4.3 Transport
	3.4.4 Blocking vs. Nonblocking

	3.5 Isolating Components with Channels
	3.6 Forming a Transaction-Level Connection
	3.7 Summary

	4
	4.1 Components and Hierarchy
	4.1.1 Traversing the Hierarchy
	4.1.2 Singleton Top

	4.2 Connectivity
	4.2.1 Connecting across the Hierarchy
	4.2.2 Note to AVM Users

	4.3 Phases
	4.4 Config
	4.4.1 Configuration and Phasing

	4.5 Factory
	4.5.1 How the Factory Works
	4.5.2 The OVM Factory API
	4.5.3 String-Based or Type-Based?

	4.6 Shutting Down the Testbench
	4.6.1 Timeout

	4.7 Connecting Testbenches to Hardware
	4.8 Tests and Testbenches
	4.9 Reporting
	4.9.1 Basic Messaging
	4.9.2 Message Actions
	4.9.3 Message Files
	4.9.4 Message Handlers
	4.9.5 Altering the Flow of Control

	4.10 Summary

	5
	5.1 Drivers and Monitors
	5.2 Introducing the HFPB Protocol
	5.2.1 HFPB Write Operation
	5.2.2 Basic Read Operation

	5.3 An RTL Memory Slave
	5.4 Monitors and Analysis Ports
	5.5 Summary

	6
	6.1 Types of Reuse (or Reuse of Types)
	6.2 Reusable Components
	6.3 Agents
	6.4 Reusable HFPB Protocol
	6.5 Agent Example
	6.6 Summary

	7
	7.1 Floating Point Unit
	7.2 Coverage Collectors
	7.3 FPU Agent
	7.4 Scoreboards
	7.5 Different Tests
	7.6 Summary

	8
	8.1 Sequence Basics
	8.2 A Sequence Example
	8.3 Anatomy of a Sequence
	8.4 Another Sequence API
	8.5 Response Routing
	8.6 Sequences in Parallel
	8.7 Constructing APIs with Sequences
	8.8 Summary

	9
	9.1 Reusing Block-Level Components
	9.2 Reusing Block-Level Testbenches
	9.3 Testing at the System Level
	9.4 Summary

	10
	10.1 Naming Scheme
	10.2 Global or Local?
	10.3 Objects
	10.3.1 Components
	10.3.2 Sequences
	10.3.3 Transactions and Sequence Items

	10.4 Packages
	10.5 Comments
	10.6 Summary

	Afterword
	A
	A.1 Components
	A.2 Interfaces
	A.3 Interconnect
	A.4 Channels
	A.5 Analysis Ports
	A.6 Summary

	Bibliography
	Index

