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To Janice

To all verification engineers, the unsung heros of the design 
world, who toil over their testbenches so systems will work, 

and who receive satisfaction from a job well done.





Preface
When I need to learn a new piece of software I invent a little problem for 
myself that is within the domain of the application and then set out to solve it 
using the new tool. When the software package is a word processor, I’ll use it 
to write a paper or article I’m working on; when the software is a drawing 
tool, I’ll use it to draw some block diagrams of my latest creation. In the 
course of solving the problem, I learn how to use the tool and gain a practical 
perspective on which features of the tool are useful and which are not.

When the new software is a programming environment or a new 
programming language, the problem is a little different. I can’t just apply the 
new language or environment to an existing problem. Unless I’m already 
familiar with the language, I don’t want to commit to using it in a new 
development project. On the other hand, I may have an inkling that it would 
be best to use the new language. Otherwise, why would I be interested in it in 
the first place? I need a small program to help me understand the 
fundamental features and get a feel for how the language works. The 
program must be small and succinct, something I can write quickly and 
debug easily. Yet, it must use interesting language features I wish to learn.

Brian Kernighan and Dennis Ritchie solved this problem for all of us when 
they wrote the famous “Hello World” program. In their classic book The C 
Programming Language, they started off with a program that is arguably the 
most trivial program you could write in C that still does something. The 
beauty of Hello World is in its combination of simplicity and completeness. 
The program quoted here in its entirety, is not only simple, it also contains all 
of the constructs of a complete C program.

#include <stdio.h>

main()
{

printf(“hello, world\n”);
}

All those years ago, I typed the program into my text editor, ran cc and ld, 
and a few seconds later saw my green CRT screen flicker with:

hello, world
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Getting that simple program working gave me confidence that C was 
something I could conquer. I haven’t counted how much C/C++ code I’ve 
written since, but it’s probably many hundreds of thousands of lines. I’ve 
written all manner of software, from mundane database programs to exotic 
multi-threaded programs. It all started with Hello World.

The Open Verification Methodology (OVM) is a programming environment 
built upon SystemVerilog. It is designed to enable the development of 
complex testbenches. Like C (or SystemVerilog or SystemC), it will take some 
time and effort to study the OVM and understand how to apply all the 
concepts effectively.    The goal of this book is to give you the confidence that 
running Hello World gave me all those years ago. If I, the author of this book, 
have done my job reasonably well, then somewhere along the way, as you 
read this book and exercise the examples, you should experience an aha! The 
metaphorical light bulb in your brain will turn on, and you will grasp the 
overall structure of the OVM and see how to apply it.

The premise of this book is that most engineers, like me, want to jump right 
into a new technology. They want to put their hands on it, try it out and see 
how it feels, learn the boundaries of what kinds of problems it addresses, and 
develop some practical experience. This is why quickstart guides and online 
help systems are popular. Generally, we do not want to read a lengthy manual 
and study the theory of operation first. We would rather plunge in, and later, 
refer to the manual only when and if we get stuck. In the meantime, as we 
experiment, we develop a general understanding of what the technology is 
and how to perform basic operations. Later, when we do crack open the 
manual, the details become much more meaningful.

This book takes a practical approach to learning about testbench construction. 
It provides a series of examples, each of which solves a particular verification 
problem. The examples are thoroughly documented and complete and 
delivered with build and run scripts that allow you to execute them in a 
simulator and observe their behavior. The examples are small and focused so 
you don’t have to wade through a lot of ancillary material to get to the heart 
of an example. 

This book presents the examples in a linear progression—from the most basic 
testbench, with just a pin-level stimulus generator, monitor, and DUT, to 
fairly sophisticated uses that involve stacked protocols, coverage, and 
automated testbench control. Each example in the progression introduces 
new concepts and shows you how to implement those concepts in a 
straightforward manner. Start by examining the first example. When you feel 
comfortable with it, move on to the second one. Continue in this manner, 
mastering each example and moving to the next.
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The examples in the cookbook are there for you to explore. After you run an 
example, study the code to really understand its construction. The 
documentation provided with each example serves as a guidepost to point 
you to the salient features. Use this as a starting point to study the code 
organization, style, and other implementation details not explicitly discussed. 

Play with the examples, too. Change the total time of simulation to see more 
results, modify the stimulus, add or remove components, insert print 
statements, and so on. Each new thing you try will help you more fully 
understand the examples and how they operate.

Feel free to use any of the code examples as templates for your work. For 
pieces that you find useful, cut and paste them into your code, or use them as 
a way to start developing your own verification infrastructures. Mainly, 
enjoy!

Mark Glasser, January 2009

Organization of This Book
Chapter 1.  Describes some general principles of verification and establishes a 
framework for designing testbenches based on two questions—Does it work? 
and Are we done?

Chapter 2.  This chapter provides an introduction to object-oriented 
programming and how OO techniques are applied to functional verification.

Chapter 3.  Here, I introduce transaction-level modeling (TLM). The 
foundation of OVM is based on TLM. I illustrate basic put, get, and transport 
interfaces with examples.

Chapter 4.  This chapter explains the mechanics of OVM, illustrating how to 
build hierarchies of class-based verification components and connect them 
with transaction-level interfaces. It also explains the essentials of using the 
OVM reporting facility.

Chapter 5.  This chapter introduces the essential components of testbenches, 
such as drivers and monitors, and illustrates their construction with 
examples.

Chapter 6.   This chapter discusses the essential topic of reuse—how to build 
components so that you have to do so only once and can apply what you have 
built in multiple situations.
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Chapter 7.  This chapter presents complete testbenches that use the types of 
components discussed so far and new ones, such as coverage collectors and 
scoreboards.

Chapter 8.  OVM provides a facility called sequences for building complex 
stimulus generators. Sequences are discussed in this chapter, including how 
to construct sequences and how to use them to form a test API.

Chapter 9.  It is important to reuse block-level testbenches when testing 
subassemblies or complete systems. This chapter illustrates some techniques 
for taking advantage of existing testbench components when constructing a 
system from separate blocks.

Chapter 10.  SystemVerilog and OVM motivate new coding conventions. This 
chapter discusses some ways of constructing code to ensure that it is efficient, 
readable, and of course, reusable.

Obtaining the OVM Kit

You can get the open source OVM kit from www.ovmworld.com. The OVM 
kit contains complete source code and documentation.

Obtaining the Example Kit

The code used to illustrate concepts in this text is derived from the OVM 
cookbook kit available from Mentor Graphics. You can download the kit from 
www.mentor.com. Many of the snippets throughout the text have line numbers 
associated with them and, in some cases, a file name. The file names and line 
numbers are from the files in the Mentor OVM example kit. 

Using the OVM Libraries

The OVM SystemVerilog libraries are encapsulated in a package called 
ovm_pkg. To use the package, you must import it into any file that uses any of 
the OVM facilities. The OVM library also contains a collection of macros that 
are useful in some places. You will need to include those as well as import the 
package

import ovm_pkig::*;
‘include “ovm_macros.svh”

To make the OVM libraries available to your SystemVerilog testbench code, 
you must compile it into the work library. This requires two command line 
options when you compile your testbench with Verilog:

OVM Cookbook Examples Kit
Updated Download Locations
The OVM Cookbook Examples Kit is available for download on the following two websites:

1) www.verificationacademy.com
2) www.ovmworld.org
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+incdir+<location-of-OVM-libraries>/src 
<location-of-OVM-libraries>/src/ovm_pkg.sv 

The first option directs the compiler to search the OVM source directory for 
include files. The second option identifies the OVM package to be compiled.

Building and Running the Examples

Installing the cookbook kit is a matter of unpacking the kit in a convenient 
location. No additional installation scripts or processes are required. You will 
have to set the OVM_HOME environment variable to point to your installation of 
OVM:

% setenv OVM_HOME <ovm-location>

Each example directory contains a run_questa script and one or more 
compile_* scripts. The run_questa script runs the example in its entirety. 
The compile script is a file that is supplied as an argument to the -f option on 
the compiler command line. Each example is also supplied with a vsim.do
file that contains the simulator commands needed to run each example.

The simplest way to run an example is to execute its run_questa script:

% ./run_questa

This script compiles, links, and runs the example. You can also run the steps 
manually with the following series of commands:

% vlib work
% vlog -f compile_sv.f
% vsim -c top -do vsim.do

You must have the proper simulator license available to run the examples. 

Who Should Read This Book?

This book is intended for electronic design engineers and verification 
engineers who are looking for ways to improve their efficiency and 
productivity in building testbenches and completing the verification portion 
of their projects. A familiarity with hardware description languages (HDL) in 
general, and specifically SystemVerilog, is assumed. It is also assumed that 
you know how to write programs in SystemVerilog, but it is not necessary to 
be an expert. Familiarity with object-oriented programming or OO 
terminology is helpful to fully understand the OVM. If you are not yet 
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familiar with OO terminology, not to worry, the book introduces you to the 
fundamental concepts and terms.
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Introduction
Software construction is not usually a topic that immediately comes to mind 
when hardware designers and verification engineers talk about their work. 
Designers and verification engineers, particularly those schooled in electrical 
engineering, naturally think of design and verification work as a “hardware 
problem,” meaning that principles of hardware design are required to build 
and verify systems. Of course, they are largely, but not entirely, correct. 
Electronic design requires an in-depth knowledge of hardware, everything 
from basic DC and AC circuit analysis and transistor operation to 
communication protocols and computer architecture. A smattering of physics 
is useful too for designs implemented in silicon (which is the intent for most). 
However, building a testbench to verify a hardware design is a different kind 
of problem—it is a software problem.

Today, with the availability of reliable synthesizers and the application of 
synchronous design techniques, the lowest level of detail that designers must 
consider is register transfer level (RTL). As the name suggests, the primary 
elements of a design represented at this level are registers, interconnections 
between registers, and the computation necessary to modify their values. 
Since each register receives new values only when the clock pulses, all of the 
combinational logic needed to compute the register value can be abstracted to 
a set of Boolean and algebraic expressions.

RTL straddles the hardware and software worlds. The components of an RTL 
design are readily identifiable as hardware; such as registers, wires, and 
clocks. Yet the combinational expressions and control logic look suspiciously 
like those in typical procedural programming languages, such as C or Java. 
The process of building an RTL design is much like programming. You write 
code that represents the structures in your design using an HDL, a special 
programming language designed specifically for this purpose. You use 
compilers, linkers, and debuggers, just as you would if you were 
programming in C. There are differences, of course. You do not need to 
consider issues surrounding timing, concurrency, and synchronization when 
programming in C (unless you are writing embedded software, which further 
blurs the line between hardware and software).

Testbenches live squarely in the software world. The elements of a testbench 
are exactly the same as those found in any software system—data structures 
and algorithms. Testbenches are hardware aware since their job is to control, 
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respond to, and analyze hardware. Still, the bulk of their construction and 
operation falls under the software umbrella.

Most of what a testbench “does,” does not involve hardware. Testbenches 
operate at levels of abstraction higher than RTL, thus they do not require 
registers, wires, and other hardware elements. We can categorize the 
testbench results we collect and analyze as data processing, which does not 
involve hardware elements at all. Testbench programs do not need to be 
implemented in silicon, which completely frees them from the limitations of 
synthesizable constructs. The only place that a testbench is involved with 
hardware is at its interfaces. Testbenches must stimulate and respond to 
hardware. Testbenches must know about hardware, but they do not need to be
hardware. 

Because testbenches are software, it is appropriate to apply software 
construction techniques to building them. Software construction is at the 
center of modern verification technology and the OVM. Software 
construction is itself a very large topic on which many volumes have been 
written. It is not possible for us to go into great depth on topics such as object-
oriented programming, library organization, code refactoring, testing 
strategies, and so on. However, this book touches on these topics in a practical 
way, showing how to apply software techniques to building testbenches. I 
rely heavily on examples to illustrate the principles discussed.
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Verification Principles
This chapter surveys general principles of verification and establishes a 
framework for designing testbenches based on two questions—Does it work? 
and Are we done?

1.1 Verification Basics

Functionally verifying a design means comparing the designer’s intent with 
observed behavior to determine their equivalence. We consider a design 
verified when, to everyone’s satisfaction, it performs according to the 
designer’s intent. This basic principle often gets lost in the discussion of 
testbenches, assertions, debuggers, simulators, and all the other 
paraphernalia used in modern verification flows. To tell if a design works, 
you must compare it with some known reference that represents the 
designer’s intent. Keep this in mind as you read the rest of this book. Every 
testbench has some kind of reference model and a means to compare the 
function of the design with the reference.

When we say “design,” we mean the design being verified, often called the 
design under test or DUT. To be verified, the DUT is typically in some form 
suitable for production—a representation that can be transformed into silicon 
by a combination of automated and manual means. We distinguish a DUT 
from a sketch on the back of a napkin or a final packaged die, neither of which 
is in a form that can be verified. A reference design captures the designer’s 
intent, that is, what the designer expects the design to do. The reference can 
take many forms, such as a document describing the operation of the DUT, a 
golden model that contains a unique algorithm, or assertions that represent a 
protocol.

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_2, 
© Mentor Graphics Corporation, 2009
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Figure 1-1  Comparing Design and Intent

To automate the comparison of the behavior with the intent, both must be in a 
form that we can execute on a computer using some program that does the 
comparison. Exactly how to do this is the focus of the rest of this book. The 
problem of building a design is a topic beyond the scope of this text. Here, we 
confine our discussion to the problem of capturing design intent and 
comparing it with the design to show their equivalence.

1.1.1 Two Questions

Verifying a design involves answering two questions: Does it work? and Are 
we done? These are basic, and some would say, obvious questions. Yet they 
motivate all the mechanics of every verification flow. The first question is 
Does it work? This question comes from the essential idea of verification we 
discussed in the previous section. It asks, Does the design match the intent? 
The second question is Are we done? It asks if we have satisfactorily 
compared the design and intent to conclude whether the design does indeed 
match the intent, or if not, why not. We use these valuable questions to create 
a framework for developing effective testbenches.

1.1.2 Does It Work?

Does it work? is not a single question but a category of questions that 
represent the nature of the DUT. Each design will have its own set of does-it-
work questions whose role is to determine functional correctness of the design. 
Functional correctness questions ask whether the device behaves properly in 
specific situations. We derive these questions directly from the design intent, 
and we use them to express design intent in a testbench.

Consider a simple packet router as an example. This device routes packets 
from an input to one of four output ports. Packets contain the address of the 

equal
?

Observed
Behavior

Designer’s
Intent
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destination port and have varying length payloads. Each packet has a header, 
trailer, and two bytes for the cyclic redundancy check (CRC). The does-it-
work questions might include these:

Does a packet entering the input port addressed to output port 3 
arrive properly at port 3?
Does a packet of length 16 arrive intact?
Are the CRC bytes correct when the payload is [0f 73 a8 c2 3e 
57 11 0a 88 ff 00 00 33 2b 4c 89]?

This is just a sample of a complete set of questions. For a device even as 
relatively simple as this hypothetical packet router, the set of does-it-work 
questions can be long. To build a verification plan and a testbench that 
supports the plan, you must first enumerate all the questions or show how to 
generate all of them, and then select the ones that are interesting.

Continuing with the packet router example, to enumerate all the does-it-work 
questions, you can create a chart like this:

The table above contains two kinds of questions, those we can answer directly 
and those we can break down into more detailed questions. Question 1 is a 
series of questions we can explicitly enumerate: 

Number Does-It-Work Questions

1. For all four output ports, does a packet arriving at the input 
port addressed to an output port arrive at the proper output 
port?

2. Do packets of varying payload sizes, from eight bytes to 256 
bytes, arrive intact?

3. Is the CRC computation correct for every packet?

4. Is a packet with an incorrect header flagged as an error?

Number Does-It-Work Questions

1a Does a packet arriving at the input port addressed to output 
port 0 arrive at port 0?

1b Does a packet arriving at the input port addressed to output 
port 1 arrive at port 1?



6 Verification Basics
Notice that we formulate all of the questions so that they can be answered yes 
or no. At the end of the day, a design either works or it doesn’t—it either is 
ready for synthesis and place and route or it is not. If you can answer all the 
questions affirmatively, then you know the design is ready for the next 
production step.

When you design your set of does-it-work questions, remember to word them 
so they can be answered yes or no. A yes answer is positive; that is, answering 
yes means the device operates correctly. That will make things easier than 
trying to keep track of which questions should be answered yes and which 
should be answered no. A question such as Did the router pass any bad 
packets? requires a no answer to be considered successful.   A better wording 
of the question is, Did the router reject bad packets? But you should make the 
questions as specific as you can, so an even better wording is, When a bad 
packet entered the input port, did the router detect it, raise the error signal, 
and drop the packet? Keep in mind that more specific questions tell you more 
about the machinery. Your testbench needs to determine the yes or no answer.

A properly worded yes or no question contains its own success criteria. It 
says what will achieve a yes response. A question such as, Is the average 
latency less than 27 clock cycles? contains the metric, 27 clock cycles, and the 
form of comparison, less than. If the question is (improperly) worded as, 
What is the average latency of packets through the router? we will not know 
what is considered acceptable. To answer either question, you first must be 
able to determine the average latency. Only in the correct wording of the 
question do we know how to make a comparison to determine whether the 
result is correct. The metric by itself does not tell us whether the design is 
functioning as intended. When we compare the measured value against the 
specification, 27 clock cycles in this example, we can determine whether the 
design works.

As is often the case, it is not practical to enumerate every single does-it-work 
question. To verify that every word in a 1 Mb memory can be written to and 
read from, it is neither practical nor necessary to write one million questions. 
Instead, a generator question, a question that generates many others, takes the 
place of one million individual questions. Can each of the one million words 

1c Does a packet arriving at the input port addressed to output 
port 2 arrive at port 2?

1d Does a packet arriving at the input port addressed to output 
port 3 arrive at port 3?

Number Does-It-Work Questions
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in the memory be successfully written to and read from? is a generator 
question.

Other questions may themselves represent classes of questions. Question 3, Is 
the CRC computation correct for every packet? is an example. Testing the 
CRC computation requires a number of carefully-thought-through tests to 
determine whether the CRC computation is correct in all cases. For example, 
we also want to test what happens when the payload is all zeros, is all ones, 
has an odd number of bytes, has an even number of bytes, has odd bytes that 
are all zero and even bytes that are all one, and so forth. 

1.1.3 Are We Done?

To determine the answer to Are we done?, we need to know if we have 
answered enough of the does-it-work questions to claim that we have 
sufficiently verified the design. We begin this task by prioritizing all the does-
it-work questions across two axes: 

The art of building a testbench requires that, in the initial stage, we identify 
the set of questions and sort them to identify the ones that return the highest 
value in terms of verifying the design. The next step is to build the machinery 
that will answer the questions and determine which ones have been answered 
(and which have not).

Are-we-done questions are also called functional coverage questions, questions 
that relate to whether the design is sufficiently covered by the test suite in 
terms of design function. As with does-it-work questions, we can also 
decompose functional coverage questions into more detailed questions. And
just like functional correctness questions, functional coverage questions must 
also be answerable in terms of yes or no. The following list includes examples 
of functional coverage questions:

Has every processor instruction been executed at least once?
Has at least one packet traversed from every input port to every 
output port?

Easy to answer Hard to answer

Most critical 
functionality

No-brainer. Get to work!

Least critical 
functionality

Probably can omit. Don’t waste the time.
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Has the memory been successfully accessed with a set of 
addresses that exercise each address bit as one and then each 
address bit as zero, not including 0xffffffff and 0x00000000?

Another way to think of these questions is that they ask, Have the necessary 
does-it-work questions been answered affirmatively? When we think of 
functional coverage in this light, the term refers to covering the set of does-it-
work questions. Furthermore, coverage questions identify a metric and a 
threshold for comparison. Coverage is reached (that is, the coverage question 
can be answered yes) when the metric reaches the threshold.

In summary, the art of building a testbench begins with a test plan. The test 
plan begins with a carefully thought out set of does-it-work and are-we-done 
questions.

1.1.4 Two-Loop Flow

The process for answering the does-it-work and are-we-done questions can 
be described in a simple flow diagram as shown in Figure 1-2.   Everything is 
driven by the functional specification for the design. From the functional 
specification, you can derive the design itself and the verification plan. The 
verification plan drives the testbench construction. 

The flow contains two loops, the does-it-work loop and the are-we-done loop. 
Both loops start with a simulation operation. The simulation exercises the 
design with the testbench and generates information we use to answer the 
questions. First we ask, Does it work? If any answer is no, then we must 
debug the design. This debugging exercise can result in changes to the design 
implementation.

Once the design works to the extent it has been tested, then it is time to 
answer the question Are we done? We answer this question by collecting 
coverage information and comparing it against thresholds specified in the test 
plan. If we do not reach those thresholds, then the answer is no, and we must 
modify the testbench to increase the coverage. Then we simulate again.

Changing the testbench or the stimulus can cause other latent design bugs to 
surface. A subsequent iteration around the loop may cause us to go back to 
the does-it-work loop again to fix any new bugs that appear. As you can see, a 
complete verification process flip-flops back and forth between does-it-work 
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and are-we-done loops until we can answer yes for all the questions in both 
categories. 

Figure 1-2  Two-Loop Flow

In an ideal world, a design has no bugs and the coverage is always sufficient, 
so you only have to go around each loop once to get yes answers to both 
questions. In the real world, it can take many iterations to achieve two yes 
answers. One objective of a good verification flow is to minimize the number 
of iterations to complete the verification project in the shortest amount of time 
using the smallest number of resources.

1.2 First Testbench

Let’s jump right in by illustrating how to verify one of the most fundamental 
devices in a digital electronic design, an AND gate. An AND gate computes 
the logical and of the inputs. The function of this device is trivial, and in 
practice, is hardly worth its own testbench. Because it is trivial, we can use it 
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to illustrate some basic principles of verification without having to delve into 
the details of a more complex design.

Figure 1-3 shows the schematic symbol for a two-input AND gate. The gate 
has two inputs, A and B, and a single output Y. The device computes the 
logical AND of A and B and puts the result on Y. 

Figure 1-3  A Two-Input AND Gate

The following truth table describes the function of the device.

The truth table is exhaustive: it contains all possible inputs for A and B and 
thus all possible correct values for output Y.

Our mission is to prove that our design, the AND gate, works correctly. To 
verify that it does indeed perform the AND function correctly, we first need to 
list the questions. The truth table helps us create the set of questions we need 
to verify the design. Each row of the table contains an input for A and B and 
the expected output for Y. Since the table is exhaustive, our generator 
question is, For each row in the truth table, when we apply the values of A 
and B identified in that row, does the device produce the expected output for 
Y? To answer the are-we-done question, we determine whether we have 
exercised each row in the truth table and received a yes answer to the does-it-
work question for that row. Our are-we-done question is Do all rows work?

To automate answering both the does-it-work and are-we-done questions, we 
need some paraphernalia, including the following:

A model that represents the DUT (in this case, the AND gate)
The design intent in a form we can codify as a reference model

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

A

B
Y
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Some stimuli to exercise the design
A way to compare the result to the design intent

Figure 1-4  First Testbench

While our little testbench is simple, it contains key elements found in most 
testbenches at any level of complexity. The key elements are the following:

DUT
Stimulus generator—generates a sequence of stimuli for the DUT
Scoreboard—embodies the reference model

The scoreboard observes the inputs and outputs of the DUT, performs the 
same function as the DUT except at a higher level of abstraction, and 
determines whether the DUT and reference match. The scoreboard helps us 
answer the does-it-work questions.

1.2.1 DUT

The DUT is our two-input AND gate. We implement the AND gate as a 
module with two inputs, A and B, and one output Y. 

43    module and2 (
44      output bit Y,
45      input A, B);
46    
47      initial Y = A & B;
48    
49      always @* Y = #1 A & B;
50    endmodule

The stimulus generator in this example generates directed stimulus. Each new 
value emitted is computed in a specific order. Later, we will look at random 
stimulus generators which, as their name suggests, generate random values.

stimulus

scoreboard

A

B
Y
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80    module stimulus(output bit A, B);
81    
82      bit [1:0] stimulus_count = 0;
83    
84      always
85        #10 {A,B} = stimulus_count++;
86    
87    endmodule

The purpose of the stimulus generator is to produce values as inputs to the 
DUT. stimulus, a two-bit quantity, contains the value to be assigned to A and 
B. After it is incremented in each successive iteration, the low-order bit is 
assigned to A, and the high-order bit is assigned to B.

1.2.2 Scoreboard

The scoreboard is responsible for answering the does-it-work question. It 
watches the activity on the DUT and reports whether it operated correctly.1
One important thing to notice is that the structure of the scoreboard is 
strikingly similar to the structure of the DUT. This makes sense when you 
consider that the purpose of the scoreboard is to track the activity of the DUT 
and determine whether the DUT is working as expected. 

58    module scoreboard(input bit Y, A, B);
59    
60      reg Y_sb, truth_table[2][2];
61    
62      initial begin
63        truth_table[0][0] = 0;
64        truth_table[0][1] = 0;
65        truth_table[1][0] = 0;
66        truth_table[1][1] = 1;
67      end
68    
69      always @(A or B) begin
70        Y_sb = truth_table[A][B];
71        #2 $display(“@%4t - %b%b : Y_sb=%b, Y=%b (%0s)”, 
72              $time, A, B, Y_sb, Y, 
73              ((Y_sb == Y) ? “Match” : “Mis-match”));
74      end
75    endmodule

1. For anything more sophisticated than an AND gate, the monitor and response 
checker would be separate components in the testbench. For the trivial AND gate 
testbench, this would be more trouble than it’s worth and would cloud the basic 
principles being illustrated.
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The scoreboard pins are all inputs. The scoreboard does not cause activity on 
the design. It passively watches the inputs and outputs of the DUT. 

The top-level module, shown below, is completely structural; it contains 
instantiations of the DUT, the scoreboard, and the stimulus generator, along 
with the code necessary to connect them. 

92    module top;
93    
94      wire A, B, Y;
95    
96      stimulus    s(A, B);
97      and2        a(Y, A, B);
98      scoreboard sb(Y, A, B);
99    
100     initial
101       #100 $finish(2);
102   endmodule

When we run the simulation for a few iterations, here is what we get: 

# @  22 - 01 : Y_sb=0, Y=0 (Match)
# @  32 - 10 : Y_sb=0, Y=0 (Match)
# @  42 - 11 : Y_sb=1, Y=1 (Match)
# @  52 - 00 : Y_sb=0, Y=0 (Match)
# @  62 - 01 : Y_sb=0, Y=0 (Match)
# @  72 - 10 : Y_sb=0, Y=0 (Match)
# @  82 - 11 : Y_sb=1, Y=1 (Match)
# @  92 - 00 : Y_sb=0, Y=0 (Match)

Each message has two parts. The first part shows the stimulus being applied. 
The second part shows the result of the scoreboard check that compares the 
DUT’s response to the predicted response. We use a colon to separate the two 
parts.

This simple testbench illustrates the use of a stimulus generator and a 
scoreboard that serves as a reference. Although the DUT is a simple AND 
gate, all the elements of a complete testbench are present. 

1.3 Second Testbench

The previous example illustrated elementary verification concepts using a 
combinational design, an AND gate. Combinational designs, by their very 
nature, do not maintain any state data. In our second example, we look at a 
slightly more complex design that maintains state data and uses a clock to 
cause transitions between states.
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The verification problem associated with synchronous (sequential) designs is 
a little different than for combinational designs. Everything you need to know 
about a combinational design is available at its pins. A reference model for a 
combinational device simply needs to compute f(x) where x represents the 
inputs to the device and f is the function it implements. The outputs of a 
sequential device are a function of its inputs and its internal state. Further 
computation may change the internal state. The scoreboard must track the 
internal state of the DUT and compare the output pins.

A combinational device can be exhaustively verified by exercising all possible 
inputs. For a device with n input pins, we must apply a total of 2n input 
vectors. The number 2n can be large, but computing that many inputs is easy. 
We just need to have an n-bit counter and apply each value of the counter to 
the inputs of the device.

For a sequential device, the notion of “done” must extend to covering not 
only the total number of possible inputs, but also the number of possible 
internal states. For a device with n inputs and m internal states, you must 
cover (2n inputs) * (2m states), which is 2n+m combinations of internal states 
and inputs. For a device with 64 input pins and a single 32-bit internal 
register, the number of state-input combinations is 296—a very large number 
indeed!

Even for very large numbers of combinations, the verification problem would 
not be too difficult if it were possible to simply increment a counter to reach 
all combinations, as we do with combinational devices. Unfortunately, that is 
not possible. The internal state is not directly accessible from outside the 
device. It can only be modified by manipulating the inputs. The problem now 
becomes how to reach all the states in the device through only manipulating 
the inputs. This is a difficult problem that requires a deep understanding of 
the device to generate sequences of inputs to reach all the states.

Since it is difficult to reach all the states, the obvious question becomes, Can 
we prune the problem by reducing the number of states that we need to reach 
to show that the device works correctly? The answer is yes. Now the question 
becomes, How do we decide which states do not need to be covered?

This topic is complex, and a full treatment of it is beyond the scope of this 
text. However, we can give an intuitive answer to the question. States that can 
be shown to be unreachable, through formal verification or other techniques, 
do not need to be covered. The designer should consider simplifying the 
design to remove unreachable states, since they provide no value. States that 
have a low probability of being reached may also be eliminated from the 
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verification plan. Determining the probability threshold and assigning 
probabilities to states is as much an art as a science. It involves understanding 
how the design is used and which inputs are expected (as compared to which 
are possible).

It is also possible to eliminate coverage of states that are functionally 
equivalent. Consider a packet communications device. In theory, every 
possible packet payload value represents a distinct state (or set of states) as it 
passes through the design, and it should be covered during verification. 
However, it is probably not a stretch to consider that arbitrary non-zero 
values are, for all intents and purposes, equivalent. Of course, there might be 
some interesting corner cases that must be checked, such as all zeros, all ones, 
particular values that might challenge the error correction algorithms, and so 
forth. Variations in data become interesting when they affect control flow. 

In general, it is more important to cover control states than data states. A 
common way to reduce the number of states necessary to cover a design is to 
separate data and control. For a particular control path, the data can be 
arbitrary. For certain data, you may want to fix the control path. For example, 
in an ALU, a design that we will consider in detail in later chapters, you can 
separate the control functions of getting data into and out of the registers and 
establishing the arithmetic operation to be performed from the results of 
specific arithmetic operations. Using directed control, you can randomize 
data or look at data corner cases such as divide by 0 or multiply by 1. 

For complex sequential designs, determining which states to cover (and 
which do not need to be covered) and how to reach those states with minimal 
effort is a problem that keeps verification engineers employed. In this section, 
we will consider a small sequential device whose internal states can easily be 
covered.

1.3.1 3-Bit Counter

The design shown in Figure 1-5 is a 3-bit counter with an asynchronous reset. 
Each time the clock pulses high, the count increments. The design is 
composed of three toggle flip-flops, each of which maintains a single bit of the 
counter. The flip-flops are connected with some combinational logic to form a 
counter. Each flip-flop toggles when the T input is high. When T is low, the 
flip-flop maintains its current state. When the active low reset is set to 0, the 
flip-flop moves to a 0 state.
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Figure 1-5  3-Bit Counter

The code for the counter is contained in two modules. One is a simple toggle 
flip-flop, and the other connects the flip-flops with the necessary glue logic to 
form a counter. The first example shown below is the toggle flip-flop.

36    module toggle_ff (output bit q, input t, rst_n, clk);
37    
38      always @ (posedge clk or negedge rst_n)
39        if (!rst_n) q <= ‘0;
40        else if (t) q <= ~q;
41    
42    endmodule

The counter comprises three toggle flip-flops and an AND gate.

47    module counter (output [2:0] q, input rst_n, clk);
48    
49      wire t2;
50    
51      toggle_ff ff0 (q[0], 1’b1, rst_n, clk);
52      toggle_ff ff1 (q[1], q[0], rst_n, clk);
53      toggle_ff ff2 (q[2], t2,   rst_n, clk);
54      and a1 (t2, q[0], q[1]);
55    
56    endmodule

The design is straightforward, but it has characteristics that are common in 
real designs and that require some attention for proper design verification.
The key characteristics are that the design is driven by a clock, and that it 
maintains internal state. The AND gate from the previous example does not 
maintain any state. All of the information about what the design is doing can 
be gleaned from its pins. In a design with internal data, that is not the case. 
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This difference is reflected in the design of our scoreboard. Figure 1-6 shows 
the organization for the testbench for the 3-bit counter.

Figure 1-6  Testbench Organization for 3-Bit Counter

In many respects, the testbench for the 3-bit counter is much like the one for 
the AND gate. Both have a scoreboard whose role is to watch what the design 
is doing and determine whether it is working correctly. Both have a device for 
driving the DUT. However, we manage operation differently for these 
designs. We use a stimulus generator for the AND gate, but we use a controller
for the 3-bit counter. The 3-bit counter is a free-running device. As long as it is 
connected to a running clock, it will continue to count. So we do not need a 
stimulus generator as we did with the AND gate. Instead, the controller 
manages the operation of the DUT and testbench. The controller provides an 
initial reset so that the count starts from a known value. It also stops the 
simulation at the appropriate time.

95    module control(output bit rst_n, input clk);
96    
97      initial begin
98        rst_n <= 0;
99        @(posedge clk);
100       @(negedge clk);
101       rst_n <= 1;
102       repeat (10) @(posedge clk);
103       $finish;
104     end
105   
106   endmodule
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The scoreboard must track the internal state of the DUT. It does this using the 
variable count. Like the DUT, when reset is activated, count is set to 0. Each 
clock cycle count increments, and the new value is compared with the count 
from the DUT. 

73    module scoreboard (input [2:0] q, input rst_n, clk );
74    
75      int count;
76    
77      always @(posedge clk or negedge rst_n) begin
78        if(!rst_n) count <= 0;
79        else begin
80          if (count == q)
81            $display(“time =%4t q = %3b count = %0d match!”,
82                     $time, q, count);
83          else
84           $display(“time =%4t q = %3b count = %0d <-- no 
match”,
85                     $time, q, count);
86          count <= (count + 1) % 8;
87        end
88      end
89    
90    endmodule

The scoreboard has a high-level model of the counter. It uses an integer 
variable and the plus (+) operator to form a counter instead of flip-flops and 
AND gates. Each time the clock pulses, it increments its count, just like the 
RTL counter. It also compares to see if its internal count matches the output of 
the counter DUT. 

For completeness, the example shows the clock generator and top-level 
module. The clock generator simply initializes the clock to zero, and then it 
toggles it every 5 ns. 

61    module clkgen(output bit clk);
62    
63      initial  begin
64        clk <= 0;
65        forever #5 clk = ~clk;
66      end
67    
68    endmodule

The top-level module is typical of most testbenches. It connects the DUT and 
the testbench components. 
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111   module top;
112   
113     wire [2:0] q;
114     wire clk, rst_n;
115   
116     clkgen   ckgn     (clk);
117     counter  cntr     (q, rst_n, clk);
118     control  ctrl     (rst_n, clk);
119     scoreboard score  (q, rst_n, clk);
120   
121   endmodule

We have illustrated a simple testbench that contains the elements used in 
much more sophisticated testbenches. Sequential designs that maintain 
internal state require a scoreboard that operates in parallel with the DUT. The 
scoreboard performs the same computations as the DUT but at a higher level 
of abstraction. The scoreboard also compares its own computation with 
inputs received from the DUT. 

1.4 Layered Organization of Testbenches

Just as a design is a network of design components, a testbench is a network 
of verification components. The OVM defines verification components, their 
structure, and interfaces. This section describes the essential OVM 
components.

OVM testbenches are organized in layers. The bottommost layer is the DUT, 
an RTL device with pin-level interfaces. Above that is a layer of transactors, 
devices that convert between the transaction-level and pin-level worlds. The 
components in the layers above the transactor layer are all transaction-level 
components. The diagram below illustrates the layered testbench 
organization. The box on the left identifies the name of the layer. The box on 
the right lists the type of components in that layer. The vertical arrows show 
which layers communicate directly. For example, the control layer 
communicates with the analysis, operational, and transactor layers, but not 
directly with the DUT.
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Figure 1-7  OVM Testbench Architecture Layers

You can also view a testbench as a concentric organization of components. 
The innermost ring maps to the bottom layer, and the outermost ring maps to 
the top layer. Some find it easier to understand the relationships between the 
layers using a netlist style diagram.
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Figure 1-8  Concentric Testbench Organization

1.4.1 Transactors

The role of a transactor in a testbench is to convert a stream of transactions to 
pin-level activity or vice versa. Transactors are characterized by having at 
least one pin-level interface and at least one transaction-level interface. 
Transactors come in a wide variety of shapes, colors, and styles. We’ll focus 
on monitors, drivers, and responders.

Monitor.  A monitor, as the name implies, monitors a bus. It watches the pins 
and converts their wiggles to a stream of transactions. Monitors are passive, 
meaning they do not affect the operation of the DUT in any way.

Driver.  A driver converts a stream of transactions (or sequence items) into 
pin-level activity. 

Responder.  A responder is much like a driver, but it responds to activity on 
pins rather than initiating activity.

1.4.2 Operational Components

The operational components are the set of components that provide all the 
things the DUT needs to operate. The operational components are responsible 
for generating traffic for the DUT. They are all transaction-level components 
and have only transaction-level interfaces. The ways to generate stimulus are 
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as varied as the kinds of devices there are to verify. We’ll look at three general 
kinds of operational components: stimulus generators, masters, and slaves.

Stimulus Generator.  Stimulus generators create a stream of transactions for 
exercising the DUT. Stimulus generators can be random, directed, or directed 
random; they can be free running or have controls; and they can be 
independent or synchronized. The simplest stimulus generator randomizes 
the contents of a request object and sends that object to a driver. OVM also 
provides a modular, dynamic facility for building complex stimulus called 
sequences. These are discussed in detail in Chapter 8.

Master.  A master is a bidirectional component that sends requests and 
receives responses. Masters initiate activity. Like stimulus generators, they 
can send individual randomized transactions or sequences of directed or 
directed-random transactions. Masters may use the responses to determine 
their next course of action. Masters can also be implemented in terms of 
sequences.

Slave.  Slaves, like masters, are bidirectional components. They respond to 
requests and return responses (in contrast to masters, which send requests 
and receive responses). 

Figure 1-9  A Master and a Slave

1.4.3 Analysis Components

Analysis components receive information about what’s going on in the 
testbench and use that information to make some determination about the 
correctness or completeness of the test. Two common kinds of analysis 
components are scoreboards and coverage collectors.

Scoreboard.  Scoreboards are used to determine correctness of the DUT, to 
answer does-it-work questions. Scoreboards tap off information going into 
and out of the DUT and determine if the DUT is responding correctly to its 
stimulus.

Coverage Collector.  Coverage collectors count things. They tap into streams of 
transactions and count the transactions or various aspects of the transactions. 
The purpose is to determine verification completeness by answering are-we-
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done questions. The particular things that a coverage collector counts 
depends on the design and the specifics of the test. Common things that 
coverage collectors count include: raw transactions, transactions that occur in 
a particular segment of address space, and protocol errors. The list is 
limitless.

Coverage collectors can also perform computations as part of a completeness 
check. For example, a coverage collector might keep a running mean and 
standard deviation of data being tracked. Or it might keep a ratio of errors to 
good transactions.

1.4.4 Controller

Controllers form the main thread of a test and orchestrate the activity. 
Typically, controllers receive information from scoreboards and coverage 
collectors and send information to environment components.

For example, a controller might start a stimulus generator running and then 
wait for a signal from a coverage collector to notify it when the test is 
complete. The controller, in turn, stops the stimulus generator. More elaborate 
variations on this theme are possible. In an example of a possible 
configuration, a controller supplies a stimulus generator with an initial set of 
constraints and starts the stimulus generator running. When a particular ratio 
of packet types is achieved, the coverage collector signals the controller. 
Rather than stopping the stimulus generator, the controller may send it a new 
set of constraints. 

1.5 Two Domains

We can view the set of components in a testbench as belonging to two 
separate domains. The operational domain is the set of components, including 
the DUT, that operate the DUT. These are the stimulus generators, bus 
functional models (BFM), and similar components that generate stimulus and 
provide responses that drive the simulation. The DUT, responder, and driver 
transactions—along with the environment components that directly feed or 
respond to drivers and responders—comprise the operational domain. The 
rest of the testbench components—monitor transactors, scoreboards, 
coverage collectors, and controller—comprise the analysis domain. These are 
the components that collect information from the operational domain.

Data must be moved from the operational domain to the analysis domain in a 
way that does not interfere with the operation of the DUT and preserves 
event timing. This is accomplished with a special communication interface 
called an analysis port. Analysis ports are a special kind of transaction port in 
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which a publisher broadcasts data to one or more subscribers. The publisher 
signals all the subscribers when it has new data ready.

One of the key features of analysis ports is that they have a single interface 
function, write(). Analysis FIFOs, the channels used to connect analysis 
ports to analysis components, are unbounded. This guarantees that the 
publisher doesn’t block and that it deposits its data into the analysis FIFO in 
precisely the same delta cycle in which it was generated. Chapter 7 discusses 
analysis ports and analysis FIFOs in more detail. 

Figure 1-10   Connection between Operational and Analysis Domains

Generally, the operational and analysis domains are connected by analysis 
ports and control and configuration interfaces. Analysis ports tap off data 
concerning the operation of the DUT. These data might include bus 
transactions, communication packets, and status information (success or 
failure of specific operations). The components in the analysis domain 
analyze the data and make decisions. The results of those decisions can be 
communicated to the operational domain via the control and configuration 
interfaces. Control and configuration interfaces can be used to start and stop 
stimulus generators, change constraints, modify error rates, or manipulate 
other parameters affecting how the testbench operates. 
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1.6 Summary

In this chapter we looked at how to structure an overall verification process. 
The process is based on two fundamental questions, Does it work? and Are 
we done? Simple examples illustrated how to build testbench machinery to 
answer these questions with devices such as stimulus generators and 
scoreboards. The rest of this book shows how to apply transaction-level 
modeling techniques to build practical, scalable, reusable testbench 
components that answer these questions and shows how to connect them to 
form testbenches. 
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2

Fundamentals of Object-
Oriented Programming
Software engineering, unconstrained by the physics of electricity and 
magnetism, has long sought to build reusable, interchangeable, robust 
components. An important programming model that addresses the problem 
is called object-oriented programming (OOP). The central idea of OOP is that 
programs are organized as a collection of interacting objects, each with its 
own data space and functions. Objects can be made reusable because they 
encapsulate everything they need to operate, can be built with minimal or no 
external dependencies, and can be highly parameterized.

This chapter introduces the basic concepts of OOP, including the notions of 
encapsulation and interface. The chapter concludes with a discussion of why 
OOP is important for building testbenches.

2.1 Procedural vs. OOP

To understand OOP and the role it plays in verification, it is beneficial to first 
understand traditional procedural programming and its limitations. This sets 
the foundation for understanding how OOP can overcome those limitations.

In the early days of assembly language programing, programmers and 
computer architects quickly discovered that programs often contained 
sequences of instructions that were repeated throughout a program. 
Repeating lots of code (particularly with a card punch) is tedious and error 
prone. Making a change to the sequence involved locating each place the 
sequence appeared in the program and repeating the change in each location. 
To avoid the tedium and the errors caused by repeated sequences, the 
subroutine was invented.A subroutine is a unit of reusable code. Instead of 

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_2, 
© Mentor Graphics Corporation, 2009
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coding the same sequence of instructions inline, you call a subroutine. 
Parameters passed to subroutines allow you to dynamically modify the code. 
That is, each call to a subroutine with different values for the parameters 
causes the subroutine to behave differently based on the specific parameter 
values.

Every programming language of any significance has constructs for creating 
subroutines, procedures, or functions, along with syntax for passing in 
parameters and returning values. These features are useful for creating 
operations that are used often. However, some operations are very common 
(such as I/O, data conversions, numerical methods, and so forth). And to
avoid having to rewrite these operations repeatedly, programmers found it 
valuable to create libraries of commonly used functions. As a result, most 
programming languages include such a library as part of the compiler 
package. One of the most well-known examples is the C library that comes 
with every C compiler. It contains useful functions such as printf(), cos(), 
atof(), and qsort(). These are functions that virtually every programmer 
will use at some time or another. 

Imagine having to write your own I/O routines or your own computation for 
converting numbers to strings and strings to numbers. There was a time when 
programmers did just that. Libraries of reusable functions changed all that 
and increased overall programming productivity. 

As software practice and technology advanced, programmers began thinking 
at higher levels of abstraction than instructions and subroutines.   Instead of 
writing individual instructions, programmers now code in languages that 
provide highly abstracted models of the computer, and compilers or 
interpreters translate these models into specific instructions. A library, such as 
the C library or STL in C++, is a form of abstraction. It presents a set of 
functions that programmers can use to construct ever more complex 
programs or abstractions.

In his seminal book Algorithms + Data Structures = Programs, Niklaus Wirth 
explains that to solve any programming problem, you must devise an 
abstraction of reality that has the characteristics and properties of the problem 
at hand and ignore the rest of the details. He argues that the collection of data 
you need to solve a problem forms the abstraction. So before you can solve a 
problem, you first need to determine what data you need to have to create the 
solution.

To continue building reusable abstractions, we need to create libraries of data 
objects that can be reused to solve specific kinds of problems. The search for 
ways to do this leads to the development of object-oriented technology. 
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Object-oriented program analysis and design is centered around data objects, 
the functionality associated with each object, and the relationships between 
objects.

The goal of OOP is to facilitate separation of concerns, a phrase coined by 
Edsger Dijkstra in his 1974 essay titled, “On the Role of Scientific Thought.”1

In this essay he quotes himself:

It is what I sometimes have called “the separation of concerns,” 
which, even if not perfectly possible, is yet the only available tech-
nique for effective ordering of one's thoughts, that I know of. This is 
what I mean by “focussing one's attention upon some aspect”: it does 
not mean ignoring the other aspects, it is just doing justice to the fact 
that from this aspect's point of view, the other is irrelevant. It is being 
one- and multiple-track minded simultaneously....

Object-oriented languages provide facilities to separate program concerns 
and focus on them independently, and, to encapsulate data abstractions and 
present them through well-defined interfaces. Complete object-oriented 
programs are constructed by separating the program’s functionality into 
distinct classes, defining the interfaces for each class, and then establishing 
connections and interactions between components through their interfaces.

2.2 Classes and Objects

The primary unit of programming in object-oriented languages, such as 
SystemVerilog, is the class. A class contains data elements, called members, and 
tasks and functions, called methods. To execute an object-oriented program, 
you must instantiate one or more classes in a main routine and then call 
methods on the various objects. Although the terms class and object are 
sometimes used interchangeably, typically, the term class refers to a class 
declaration or an uninstantiated object, and the term object refers to an 
instance of a class. 

To illustrate these concepts, below is an example of a simple class called 
register.

class register;
local bit[31:0] contents;

function void write(bit[31:0] d)
contents = d;

1.  The complete text of Dijstra’s essay is at http://www.cs.utexas.edu/users/EWD/
ewd04xx/EWD447.PDF
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endfunction

function bit[31:0] read();
return contents;

endfunction
endclass

This very simple class has one member, contents, and two methods, read()
and write(). To use this class, you create objects by instantiating the class 
and then call the object’s methods, as shown below

module top;
register r;
bit[31:0] d;

initial begin
r = new();
r.write(32’h00ff72a8);
d = r.read();

end
endmodule

The local attribute on class member contents tells the compiler to strictly 
enforce the boundaries of the class. If you try to access contents directly, the 
compiler issues an error. You can only access contents through the publicly 
available read and write functions. This kind of access control is important to 
guarantee no dependencies on the internals of the class and thus enable the 
class to be reused.

You can use classes to create new data types, such as our simple register. 
Using classes to create new data types is an important part of OOP. You can 
also use them to encapsulate mathematical computations or to create 
dynamic data structures, such as stacks, lists, queues, and so forth. 
Encapsulating the organization of a data structure or the particulars of a 
computation in a class makes the data structure or computation highly 
reusable.

As a more complete example, let’s look at a useful data type, the pushdown 
stack. A stack is a LIFO (last in first out) structure. Items are put into the stack 
with push(), and items are retrieved from the stack with pop(). pop()
returns the last item pushed and removes it from the data structure. The 
internal member stkptr keeps track of the top of the stack. The item it points 
to is the top, and everything below it (that is, with a smaller index) is lower in 
the stack. Below is a basic implementation of a stack in SystemVerilog.

43    class stack;
44    
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45      typedef bit[31:0] data_t;
46      local data_t stk[20];
47      local int stkptr;
48    
49      function new();
50        clear();
51      endfunction
52    
53      function bit pop(output data_t data);
54    
55        if(is_empty())
56          return 0;
57    
58        data = stk[stkptr];
59        stkptr = stkptr - 1;
60        return 1;
61    
62      endfunction
63    
64      function bit push(data_t data);
65    
66        if(is_full())
67          return 0;
68    
69        stkptr = stkptr + 1;
70        stk[stkptr] = data;
71        return 1;
72    
73      endfunction
74    
75      function bit is_full();
76        return stkptr >= 19;
77      endfunction
78    
79      function bit is_empty();
80        return stkptr < 0;
81      endfunction
82    
83      function void clear();
84        stkptr = -1;
85      endfunction
86    
87      function void dump();
88    
89        $write(“stack:”);
90        if(is_empty()) begin
91          $display(“<empty>”);
92          return;
93        end
94    
95        for(int i = 0; i <= stkptr; i = i + 1) begin
96          $write(“ %0d”, stk[i]);
97        end
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98    
99        if(is_full())
100         $write(“ <full>”);
101       $display(““);
102   
103     endfunction
104   endclass
file: 02_intro_to_OOP/01_stack/stack.sv

The class stack encapsulates everything there is to know about the stack data 
structure. It contains an interface and an implementation of the interface. The 
interface is the set of methods that you use to interact with the class. The 
implementation is the behind-the-scenes code that makes the class operate. 
The interface to our stack contains the following methods:

function new();
function bit pop(output DATA data);
function bit push(DATA data);
function bit is_full();
function bit is_empty();
function void clear();
function void dump();

There is no other way to interact with stack than through these methods. 
There are also two data members of the class, stk and stkptr, that represent 
the actual stack structure. However, these two members are local, which 
means that the compiler will disallow any attempts to access them from 
outside the class. By preventing access to the internals of the data structure 
from outside, we can make some guarantees about the state of the data. For 
example, push() and pop() can rely on the fact that stkptr is correct and 
points to the top of the stack. If it were possible to change the value of stkptr
by means other than using the interface functions, then push() and pop()
would have to resort to additional time-consuming and possibly unreliable 
checks to determine the validity of stkptr.

The implementation of the interface occurs inline. The class declaration 
contains not only the interface definition, but also the implementation of each 
of the interface functions. Both C++ and SystemVerilog allow the 
implementation to be separate from the interface. Separating the interface and 
the implementation is an important concept. Programmers writing in C++ can 
use header files to capture the interface and .cc (or .cpp or whatever the 
compiler uses) to hold the implementation.

There are some important by-products of enforcing access through class 
interfaces. One is reusability. We can more easily reuse classes whose 
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interfaces are well defined and well explained than those whose interfaces are 
fuzzy. Another important by-product of enforcing access through class 
interfaces is reliability. The authors of the class can guarantee certain 
invariants (for example, stkptr is less than the size of the available stk array) 
when they know that users will not modify the data other than by the means 
provided. In addition, users can expect the state of the object to be predictable 
when they adhere to the interface. Clarity is another by-product. An interface 
can describe the entire semantics of the class. The object will do nothing other 
than execute the operations available through the interface. This makes it 
easier for those who use the class to understand exactly what it will do.

2.3 Object Relationships

The true power of OOP becomes apparent when objects are connected in 
various relationships. There are many kinds of relationships that are possible. 
We will consider two of the most fundamental relationships HAS-A and IS-A. 

2.3.1 HAS-A

HAS-A refers to the concept of one object contained or owned by another. The 
HAS-A relationship is represented by members. In our stack class, for 
example, the stack HAS-A stack pointer (stkptr) and stack array. Those are 
primitive data types, not classes, but the same concept of HAS-A applies. In 
SystemVerilog you can create HAS-A relationships between classes with 
references or pointers. The figure below illustrates the underlying memory 
model for a HAS-A relationship. Object A contains a reference or a pointer to 
object B.

Figure 2-1  HAS-A Relationship

The Unified Modeling Language (UML) is a graphical language for 
representing systems, particularly the relationships between objects in those 

A

B
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systems. The UML for a HAS-A relationship is expressed with a line between 
objects and a filled-diamond arrowhead, as in the diagram below. 

Figure 2-2  UML for a HAS-A Relationship

Object A owns an instance of object B. Coding a HAS-A relationship in 
SystemVerilog involves instantiating one class inside another or in some other 
way providing a handle to one class that is stored inside another.

class B;
endclass

class A;
local B b;
function new();

b = new();
endfunction

endclass

class A contains a reference to class B. The constructor for class A, 
function new(), calls new() on class B to create an instance of it. The 
member b holds a reference to the newly created instance of B.

2.3.2 IS-A

The IS-A relationship is most often referred to as inheritance. A new class is 
derived from a previously existing object and inherits its characteristics. 
Objects created with inheritance are composed using IS-A. The derived object 
is considered a sub-class or a more specialized version of the parent object. 

A B
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To illustrate the notion of inheritance, Figure 2-3 uses a portion of the 
taxonomy of mammals. 

Figure 2-3  IS-A Example: Mammal Taxonomy

Animals that are members of the cetacia, carnivora, or primate orders are 
mammals. These very different kinds of creatures share the common traits of 
mammals. Yet cetacia (whales, dolphins), carnivora (dogs, bears, raccoons), 
and primates (monkeys, humans) each have their distinct and unmistakable 
characteristics. To use OO terminology, a bear IS-A carnivore and a carnivore 
IS-A mammal. In other words, a bear is composed of attributes of both 
mammals and carnivores plus additional attributes that distinguish it from 
other carnivores.

To express IS-A using UML, we draw a line between objects with an open 
arrow head pointing to the base class. Traditionally, we draw the base class 
above the derived classes, and the arrows point upward, forming an 
inheritance tree (or a directed acyclic graph that can be implemented in 
languages, such as C++, that support multiple inheritance). 

Figure 2-4  UML for IS-A Relationship

When composing two objects together in a computer program using 
inheritance, the new derived object contains characteristics of the parents and 

Mammalia

Cetacia Carnivora Primates

mammalia

carnivoracetacia primates
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usually includes additional characteristics. The figure below illustrates the 
underlying memory model for an IS-A composition. In the example, the class 
B is derived from A.

Figure 2-5  Example of IS-A Relationship

SystemVerilog uses the keyword extends to identify an inheritance 
relationship between classes:

class A;
int i;
float f;

endclass

class B extends A;
string s;

endclass

Class B is derived from A, so it contains all the attributes of A. Any instance of 
B not only contains the string s, but also the floating point value f and the 
integer i.

2.4 Virtual Functions and Polymorphism

One of the reasons for composing objects through inheritance is to establish 
different behaviors for the same operation. In other words, the behavior 
defined in a derived class overrides behavior defined in a base class. The 
means to do this is through virtual functions. A virtual function is one that can 
be overridden in a derived class. Consider the following generic packet class.

class generic_packet;
addr_t src_addr;
addr_t dest_addr;
bit m_header [];
bit m_trailer []’
bit m_body [];

virtual function void set_header();

B

A
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virtual function void set_trailer();
virtual function void set_body();

endclass

It has three virtual functions to set the contents of the packet. Different kinds 
of packets require different kinds of contents. We use generic_packet as a 
base class and derive different kinds of packets from it.

class packet_A extends generic packet;
virtual function void set_header();
endfunction
virtual function void set_trailer();
endfunction
virtual function void set_body();
endfunction

endclass

class packet_B extends generic_packet;
virtual function void set_header();
endfunction
virtual function void set_trailer();
endfunction
virtual function void set_body();
endfunction

endclass

Both packet_A and packet_B may have different headers and trailers and 
different payload formats. The knowledge about how the parts of the packet 
are formatted is kept locally inside the derived packet classes. The virtual 
functions set_header(), set_trailer(), and set_body() are implemented 
differently in each subclass based on the packet type. The base class 
generic_packet establishes the organization of the class and the types of 
operations that are possible, and the derived classes can modify the behavior 
of those operations.

Virtual functions are used to support polymorphism: multiple classes that can 
be used interchangeably, each with different behaviors. For example, some 
processing of packets may not need to know what kind of packet is being 
processed. The only information necessary is that the object is indeed a 
packet; that is, it is derived from the base class. Another way to say that is, the 
the current packet is related to the base class packet via the IS-A relationship. 
Virtual functions are the mechanism by which we can code alternate 
behaviors for different variations of a packet.
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To look a little deeper at how virtual functions work, let’s consider three 
classes related to each other by the IS-A relationship.

Figure 2-6  Three Classes Related with IS-A

figure is the base class; polygon is derived from figure; square is derived 
from polygon. Each class has two functions, draw(), which is virtual, and 
compute_area(), which is non-virtual. The following sample shows the 
SystemVerilog code:

38    
39    class figure;
40    
41      virtual function void draw();
42        $display(“figure::draw”);
43      endfunction
44    
45      function void compute_area();
46        $display(“figure::compute_area”);
47      endfunction
48    
49    endclass
50    
51    class polygon extends figure;
52    
53      virtual function void draw();
54        $display(“polygon::draw”);
55      endfunction
56    
57      function void compute_area();
58        $display(“polygon::compute_area”);
59      endfunction
60    
61    endclass

figure

polygon

square
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62    
63    class square extends polygon;
64    
65      virtual function void draw();
66        $display(“square::draw”);
67      endfunction
68    
69      function void compute_area();
70        $display(“square::compute_area”);
71      endfunction
72    
73    endclass
file: 02_intro_to_OOP/03_virtual/virtual.sv

Each function prints out its fully qualified name in the form 
class_name::function_name. We can write a simple program that calls each 
of these functions to understand how the virtual functions are bound.

75    program top;
76      figure f;
77      polygon p;
78      square s;
79    
80      initial begin
81        s = new();
82        f = s;
83        p = s;
84    
85        p.draw();
86        p.compute_area();
87        f.draw();
88        f.compute_area();
89        s.draw();
90        s.compute_area();
91      end
92    endprogram
file: 02_intro_to_OOP/03_virtual/virtual.sv

The following shows what happens when we run this program:

square::draw
polygon::compute_area
square::draw
figure::compute_area
square::draw
square::compute_area

First we create s, a square, and then we assign it to f and p. The immediate 
base class of square is polygon and the base class of polygon is figure. From 
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the printed output, we can conclude that the functions are bound according to 
the following table:

In all cases, compute_area() was bound to the particular compute_area()
function specified by the type of the reference that called it—p is a reference 
to a polygon, thus polygon::compute_area() is bound. This is because 
compute_area() is non-virtual. The compiler can easily determine which 
version of the function to call simply based on the type of the object.

Because draw() is virtual, it is not always possible for the compiler to 
determine which function to call. The decision is made at run time using a 
virtual table, a table of function bindings. A virtual table is used to bind 
functions whose bindings cannot be entirely determined at compile time. A 
good reference for learning more about how virtual tables work is Inside the 
C++ Object Model by Stanley B. Lippman.

Notice that even though p is a polygon, the call to p.draw() results in 
square::draw() being called not polygon::draw(), as you might expect. 
The same thing happens with f—f.draw() is bound to square::draw(). The 
object we originally instantiated is a square, and even though we assign 
handles of different types, the fact that it is a square is not forgotten. This 
works only because square is derived from polygon, which in turn is derived 
from figure, and because draw() is declared as virtual. A compile time error 
about type incompatibility occurs if you try to assign s to p and s is not 
derived from p.

2.5 Generic Programming

Recall that object-oriented languages provide facilities to separate program 
concerns and focus on them independently. An implication of separating 
concerns is that each concern is represented only once. Duplicating code 
violates the principle. In practice, many problems are quite similar, and their 
solution requires code that is similar, but not identical. Intuitively, we want to 
take advantage of code similarity to write code that can be used in as many 
situations as possible. This intuition leads us to writing generic code, code 

p.draw() square::draw()

p.compute_area() polygon::compute_area()

f.draw() square::draw()

f.compute_area() figure::compute_area()

s.draw() square::draw()

s.compute_area() square::compute_area()
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that is highly parameterized so that it can be easily reused in a wide variety of 
situations.

Details of generic code are supplied at compile time or run time instead of 
hard coding them. Any code that has parameters, such as function calls, can 
be considered generic, but the term is usually reserved for code built around 
templates (in C++) or parameterized classes (in SystemVerilog). Making 
programs generic is consistent with the OOP goal of separating concerns. 
Thus OOP languages provide facilities for building generic code.

A parameterized class is one that (obviously) has parameters. The syntax in 
SystemVerilog for identifying parameters is a pound sign (#) in the class 
header followed by a parenthesized list of parameters. As an example, 
consider the following parameterized class:

class param #(type T=int, int R=16);
endclass

This class has two parameters, T, which is a type parameter and R, which is an 
integer parameter. Instances of a parameterized class with specific values for 
the parameters create specializations, that is, versions of the code with the 
parameters applied. 

param #(real, 29) z;
param #(int unsigned, 12) q;

The above declarations create specializations of the parameterized class 
param. The class name and parameters identify specializations. Thus, 
specializations are in fact, unique types. The compiler will not allow you to 
assign q to z, or vice versa, because they are objects of different types. 

type parameters allow you to write type-independent code, code whose data 
structures and algorithms can operate on a wide range of data types. For 
example:

class maximizer #(type T=int);
function T max(T a, T b);

if( a > b )
return a;

else
return b;

endfunction
endclass

The parameterized class maximizer has a function max() that returns the 
maximum of two values. The max algorithm is the same no matter the type of 
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the comparison objects. In this case, the only restriction is that the objects be 
comparable with the greater than (>) operator.

Classes cannot be meaningfully compared using the greater-than operator, so 
a different version of maximizer is necessary to deal with classes. To make a 
version of maximizer that will return the largest of two class objects, we must 
define a method in each class that will compare objects.

class maximizer #(type T=int);
function T max( T a, T b);

if( a.comp(b) > 0 )
return a;

else
return b;

endfunction
endclass

This presumes that the type parameter T is really a class, not a built-in type, 
such as int or real. Further, it presumes that T has a function called comp(), 
which is used to compare itself with another instance. The OVM library 
contains a parameterized component called ovm_in_order_comparator#(T), 
which is used to compare streams of transactions. It has two variants, one for 
comparing streams of built-in types, and one for comparing streams of 
classes. The reason we need two in-order comparator classes is exactly the 
same reason we need two maximizers—SystemVerilog does not support 
operators that can operate on either classes or built-in types.

2.5.1 Generic Stack

Our stack is not particularly generic. It has a fixed stack size of 20, and the 
data type of the items kept on the stack is fixed to be int. Below is a more 
generic form of stack that changes these fixed characteristics to parametrized 
characteristics.

53    class stack #(type T = int);
54    
55      local T stk[];
56      local int stkptr;
57      local int size;
58      local int tp;
59    
60      function new(int s = 20);
61        size = s;
62        stk = new [size];
63        clear();
64      endfunction
65    
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66      function bit pop(output T data);
67    
68        if(is_empty())
69          return 0;
70    
71        data = stk[stkptr];
72        stkptr = stkptr - 1;
73        return 1;
74    
75      endfunction
76    
77      function bit push(T data);
78    
79        if(is_full())
80          return 0;
81    
82        stkptr = stkptr + 1;
83        stk[stkptr] = data;
84        return 1;
85    
86      endfunction
87    
88      function bit is_full();
89        return stkptr >= (size - 1);
90      endfunction
91    
92      function bit is_empty();
93        return stkptr < 0;
94      endfunction
95    
96      function void clear();
97        stkptr = -1;
98        tp = stkptr;
99      endfunction
100   
101     function void traverse_init();
102       tp = stkptr;
103     endfunction
104   
105     function int traverse_next(output T t);
106       if(tp < 0)
107         return 0; // failure
108   
109       t = stk[tp];
110       tp = tp - 1;
111       return 1;
112   
113     endfunction
114   
115     virtual function void print(input T t);
116       $display(“print is unimplemented”);
117     endfunction
118   
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119     function void dump();
120   
121       T t;
122   
123       $write(“stack:”);
124       if(is_empty()) begin
125         $display(“<empty>”);
126         return;
127       end
128   
129       traverse_init();
130   
131       while(traverse_next(t)) begin
132         print(t);
133       end
134       $display();
135   
136     endfunction
137   
138   endclass
file: 02_intro_to_OOP/02_generic_stack/stack.sv

The generic stack class is parameterized with the type of the stack object. The 
parameter T contains a type. In this case, T can be either a class or a built-in 
type because we are not using operators directly on objects of type T. Any 
place in the class where we previously used int as the stack type, we now use 
T. For example, push() now takes an argument of type T. Class parameters, 
such as T, are compile-time parameters, meaning the value is established at 
compile time. To specialize stack#(T), we instantiate it with a specific value 
for the type. For example:

stack #(real) real_stack;

This statement creates a specialization of stack that uses real as the type of 
object on the stack.

The size of the stack is no longer fixed at 20. We use a dynamic array to store 
the stack, whose size is specified as a parameter to the constructor. Unlike T, 
the argument size is a run-time parameter—its value is specified when the 
program runs. This lets us create multiple stacks, each with a different size. 

stack #(real) big_stack;
stack #(real) little_stack;

...

big_stack = new(2048);
little_stack = new(6);
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big_stack and little_stack are of the same type. They use the same 
specialization of stack#(T). However, they are each instantiated with 
different size parameters. 

In making stack generic, we made another change. We replaced dump() with 
traverse_init() and traverse_next(). dump() relies on the type of the 
stack elements, which is not known until compile time. We need to be able to 
traverse the stack and format each element no matter what the element type 
is. It could be an int, or it could be a complex class with multiple members. 
We don’t know what it will be. To keep stack#(T) generic, we must resist all 
temptation to establish any reliance on the type of the stack elements.

Whereas dump() will run through the stack elements and print them in order, 
traverse_init() sets an internal traversal pointer (tp) to point to the top of 
the stack, and traverse_next() hands the current element (as pointed to by 
tp) back to the caller and decrements tp. The stack maintains some state 
information about the traversal. The state information is reset when 
traverse_init() is called.

By making stack#(T) generic, removing reliance on hardcoded types and 
sizes, we have made this component highly reusable. 

2.6 Classes and Modules

Interestingly, HDLs, such as Verilog and VHDL, though not considered 
object-oriented languages, are built around concepts quite similar to classes 
and objects. Module instances in Verilog, for example, are objects, each with 
its own data space and set of tasks and functions. Just like objects in OO 
programs, each instance of a module is an independent copy. All instances 
share the same set of tasks and functions and the same interfaces, but the data 
contained inside each one is independent from all other instances. Modules 
are controlled by their interfaces. Verilog modules do not support inheritance 
(that is, the ability to form IS-A relationships) or type parameterization, and 
they are static, which makes them unsuitable for true OOP. 

The similarity between classes and modules opens up an opportunity for us 
to use class objects in a hardware context. We can create verification 
components as instances of classes, giving us the flexibility of classes along 
with the connection to hardware elements. The designers of SystemVerilog 
have capitalized on this relationship when extending Verilog with classes, 
providing the capability for a class to work a lot like modules.
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The table below compares features of classes in Verilog, SystemVerilog, and 
C++. 

The SystemVerilog feature that makes this possible is the virtual interface. A 
virtual interface is a reference to an interface (here we refer to the 
SystemVerilog interface construct). We can write a class containing references 
to items inside an interface that doesn’t yet exist (that is, it isn’t instantiated). 
When the class is instantiated, the virtual interface is connected to a real 
interface. This makes it possible for a class object to both drive and respond to 
pin activity. SystemC modules are implemented as classes and allow for pins 
to be in the port list, providing the same sort of structure.

HDLs, such as Verilog and VHDL, lack many OOP facilities, and thus are not 
well suited for building testbenches. The fundamental unit of programming 
in most HDLs is the module, which is a static object. Modules come into 
existence at the very beginning of the program and persist unmodified until 
the program completes. They are syntactically static as well—the syntactic 
means to modify a module to create a variant are limited. Verilog allows you 
to parameterize scalar values, but not types. Often you are reduced to cutting 
and pasting code, then making local modifications. If you have ten different 
variations you need in a particular design, you must paste ten copies in 
appropriate locations and then locally modify each one. Should the template 
module change (the one that you pasted around to create the variants), you’ll 
have to locate each instance and make those same changes in each one. This 
process is not all that different from what our assembly language 
programmers had to do fifty years ago.

Feature Verilog 
Modules

C++
Classes

SystemVerilog
Classes

local data space yes yes yes

function interface kind of yes yes

port interface yes no yes

inheritance no yes/multiple yes/single

type parameterization no yes yes

dynamic no yes yes
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Sidebar: Simula 67

The relationship between class objects and hardware simulation has been 
around for quite some time. Simula 67,1 one of the earliest OOP 
languages, was developed explicitly for the purpose of building discrete 
event models. Simula 67 has the notion of class objects and a simulation 
kernel. It even has a kind of PLI for connecting in external Fortran 
programs. Simula provides DETACH and RESUME keywords, which 
allow processes to be spawned and reconnected, sort of a fork/join. It has 
a special built-in class called SIMULATION, which provides event list 
features.

Even though the terms object and object-oriented are not used at all in 
Simula 67, all modern object-oriented programs can trace their lineage to 
this early programming language. Discrete event simulation languages 
also can trace their genesis to Simula 67. For many, bringing together the 
ideas of OOP and hardware simulation seems new; but in fact, the two 
ideas were born together and only later parted ways. Using OOP with a 
discrete event simulator brings us full circle.

According to Ole-Johan Dahl and Kristen Nygaard, Department of 
Informatics, University of Oslo:2 

Simula 67 still is being used many places around the world, but 
its main impact has been through introducing one of the main 
categories of programming, more generally labelled object-ori-
ented programming. Simula concepts have been important in the 
discussion of abstract data types and of models for concurrent 
program execution, starting in the early 1970s. Simula 67 and 
modifications of Simula were used in the design of VLSI circuitry 
(Intel, Caltech, Stanford). Alan Kay's group at Xerox PARC used 
Simula as a platform for their development of Smalltalk (first lan-
guage versions in the 1970s), extending object-oriented program-
ming importantly by the integration of graphical user interfaces 
and interactive program execution. Bjarne Stroustrup started his 
development of C++ (in the 1980s) by bringing the key concepts 
of Simula into the C programming language. Simula has also 
inspired much work in the area of program component reuse and 
the construction of program libraries.

1. Lamprecht, Gunther, “Introduction To Simula 67,” Vieweg, 1983
2. http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_OO_start.html
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2.7 OOP and Verification

Building an object-oriented program and building a testbench are not very 
different things. A testbench is a network of interacting components. OOP 
deals with defining and analyzing networks of interacting objects. Objects can 
be related through IS-A or HAS-A, and they communicate through interfaces. 
OOP just naturally fits the problem of building testbenches.

Languages such as SystemC/C++ and SystemVerilog, which do provide OOP 
facilities, are better suited for testbench construction than HDLs, such as 
Verilog and VHDL. Using dynamic classes, parameterized classes, 
inheritance, and parameterized constructors, you can build components that 
are flexible, reusable, and robust. Spending a little extra time to build a 
generic component can result in a large productivity gain when that 
component is reused in different ways in many places.



3

Transaction-Level Modeling
The process of designing an electronic system involves taking abstract ideas 
and successively replacing the abstractions with concrete details until you 
reach a representation that can be manufactured in silicon. Since the advent of 
the digital integrated circuit, the electronic design community has carefully 
defined and codified abstractions, beginning with switches and gates, to 
provide media in which designs are rendered. RTL is an example of an 
abstraction medium commonly used to create designs. There are many tools 
based on the RTL abstraction that make it a convenient way to initiate the 
design and verification process.

However, as designs get larger and more complex, it becomes increasingly 
convenient to represent them using abstractions higher than RTL. The 
transaction level is becoming popular for creating the first incarnation of a 
design that can be simulated and analyzed.

This chapter introduces the fundamental concepts of transaction-level 
modeling (TLM). Transaction-level models consist of multiple processes 
communicating with each other by sending transactions back and forth 
through channels. This chapter illustrates these concepts with some 
producer-consumer pairs communicating through transaction-level 
interfaces.

3.1 Abstraction

In their book System Design with SystemC, Grötker et al., discuss models of 
computation. They define a model of computation as having three 
components:

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_3, 
© Mentor Graphics Corporation, 2009
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A model of time
Methods of communication between concurrent processes
Rules for process activation

RTL modeling uses a discrete model of time. Communication between 
processes is done using nets, and process activation occurs when an input net 
of a process changes its value.

In comparison, transaction-level models can be timed or untimed and use 
channels to communicate between processes. Instead of sending individual 
bits back and forth, the processes communicate by sending transactions to 
each other through function calls.1 The world of TLM encompasses a range of 
models of computation with different time, communication, and process 
activation models. In each case, however, the contents of the communication 
are at a higher level of abstraction than individual bits. Thus, a transaction-
level model is at a higher level of abstraction (it is more abstract) than an RTL 
model. Combining the notions of abstraction and models of computation, we 
can see that making an abstract model means abstracting time, data, and 
function. The following sections discuss these elements in detail.

Abstract time.  The time abstraction in a simulator refers to how often the 
entire design state is consistent. Models that run in event-driven simulators 
(for example, logic simulators) use a discrete notion of time, meaning events 
happen at specific time points. Events usually (although not always) cause a 
process of some sort to be invoked. As more events occur in a simulation, 
more processes are invoked, and with more processes comes slower overall 
simulation runs. Abstracting time reduces the number of points where the 
design must be consistent and, therefore, the total number of events and 
process activations that must occur. For example, in an RTL model, every net 
must be consistent after every change. In cycle-accurate abstraction, the 
design must be consistent only on the clock edges, eliminating all the events 
that occur between clock edges. In a transaction-level model, the design state 
must be consistent at the end of each transaction, each of which might span 
many clock cycles.

Abstract data.   Data refers to the objects communicated between 
components. In RTL models, the data refers to individual bits that are passed 
via nets between components. In transaction-level models, data is in the form 

1. You could easily make the case that a transfer of a single bit is a transaction in the 
most general sense. And even though a bit might be considered a transaction, this 
discussion on transactions restricts the concept to cases involving higher levels of 
abstractions than bits.
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of transactions, heterogeneous structures that contain arbitrary collections of 
elements. 

Consider a packet in a communications device. At the lowest level of detail, 
the packet contains start and stop bits, a header, error correction information, 
payload size, payload, and a trailer. In a more abstract model, only the 
payload and size might be necessary. The other pieces of data are not 
necessary for the calculations being performed.

Abstract function.  The function of a model is the set of all things it must do 
at each event. Abstracting function reduces that set or replaces it with simpler 
calculations. For example, in an ALU, you might choose to use the native 
multiplication operation supplied in your modeling language instead of 
coding the complete algorithm for a shift-and-add multiplier. The latter may 
be part of the implementation, but at the higher level, the details of the shift-
and-add algorithm are unimportant. The primitives that are part of the 
language define how you can abstract function. In a gate-level language, for 
example, you build complex behaviors from gates. In an RTL language, you 
build behaviors around arithmetic and logical operations on registers. In 
TLM, you implement design functionality with function calls of arbitrary 
complexity.

For the purposes of functional verification, RTL is the lowest-level abstraction 
that we need to consider. Since synthesizers can effectively convert RTL to 
gates, we don’t need to concern ourselves with lower levels of detail. Besides, 
anything lower gets into electrical issues that are beyond the scope of logic 
design.

3.2 Definition of a Transaction

To effectively talk about TLM in greater detail, we must step back and define 
transactions.

This is the most general definition of a transaction. It says that a transaction is 
everything that occurs in a design (or a module or subsystem within a design) 
between two time points. While that is accurate, it is so general that it doesn’t 
lead to practical application. A more useful definition is the following:

A transaction is a quantum of activity that occurs in 
a design bounded by time.
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This is the hardware-oriented notion of a transaction. When looking at a piece 
of hardware, you can easily identify entities between which control or data is 
transferred. In a bus-based design, reads and writes on a bus can be 
considered transactions. In a packet-based communication system, sending a 
packet is a transaction. 

The following is a third definition:

This definition is the software-oriented notion of a transaction. In a 
transaction-level model, activity is initiated by making function calls. The 
function call contains parameters that are “sent” to the called function, and 
the return value of the function contains data that is returned by the called 
function. The called function could block and cause time to pass (in a timed 
system) or it could return immediately.

3.3 Interfaces

Before we go into the details about how to build transaction-level models, we 
will first take a small detour to discuss interfaces. The term interface is used in 
several ways in OVM, each with a slightly different meaning. It’s an 
unfortunate fact of history that the same word has come to mean so many 
different things. Most of the time you can understand the meaning from the 
context in which the term is used. The different uses in this book are the 
following:

SystemVerilog interface
Object interface
DUT interface

SystemVerilog Interface.  SystemVerilog provides a construct called an 
interface, which is one of the primary container objects from which you 
construct a design in SystemVerilog. We use virtual interfaces, which are 
essentially pointers to interfaces, to connect module-based hardware to class-
based testbenches. The next chapter looks at the details of making that 
connection.

A transaction is a single transfer of control or data 
between two entities.

A transaction is a function call.
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Object Interface.  The publicly visible tasks and functions available on an 
object form its interface. There are two slight variations of this meaning of 
interface. One is straightfoward. Look at a class and determine what tasks 
and functions are available to the user of the class to operate it. That’s its 
interface. The other variation is to refer to a base class that defines the set of 
tasks and functions available to operate the derived class. This meaning of 
interface is more typically used with object-oriented languages that support 
multiple inheritance, such as C++ or Java1. In those languages, you can 
establish a requirement that the derived class supply certain functionality by 
inheriting from an interface base class. 

Figure 3-1  Interface Inheritance (with Multiple Inheritance)

The print_if interface specifies the prototypes for the print functions. Any 
class that inherits from print_if is then obliged to implement print() and 
sprint(). SystemVerilog does not support multiple inheritance, but it does 
support pure virtual interfaces. A pure virtual interface is an interface in this 
second context (a base class that defines a set of task and function prototypes) 
that has no implementations. A pure virtual version of our print_if would 
look as follows in SystemVerilog:

virtual class print_if;
pure virtual function void print();
pure virtual function string sprint();

endclass

Even though SystemVerilog does not support multiple inheritance, and OVM 
is built on SystemVerilog, it is important to understand pure virtual interfaces 
and interface inheritance because they are used heavily in OVM. In particular, 
TLM ports and exports are derived from an interface class called 

1. Java doesn’t support full multiple inheritance in the same manner as C++. It does 
support interface inheritance. This establishes the requirement that a class derived 
from an interface provide the specified functionality.

+print()
+sprint()

«interface»
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employee_base
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tlm_if_base. Later in this book, we will have more discussion on port 
construction.

DUT Interface.  A piece of hardware is typically accessed through its 
interfaces. In this context, an interface is composed of the pins and protocol 
used to communicate to the device. For example, a device may have a USB 
interface.

3.4 TLM Idioms

This section reviews the basic means of transmitting a transaction between 
components. We’ll examine put, get, and transport forms of transaction 
communication. These examples do not use the OVM library, as they are 
intended to illustrate the essential mechanics of transaction-level 
communication with minimal overhead. In the next section we’ll look at a 
more complete example that uses the OVM library for communication.

3.4.1 Put

In a put configuration, one component sends transactions to another 
component. The operation is called a put. The initiator is the component that 
initiates the transfer, and the target is the component that receives the result. 
Using TLM nomenclature, we say that the initiator puts transactions to the 
target. 

Figure 3-2  Put

Figure 3-2 indicates that A puts transactions to B. The initiator has a port
drawn as a square box, and the target has an export drawn as a circle. The flow 
of control is from box to circle; that is, A will call B, which contains an 
implementation of the port methods. The arrow shows the direction of the 
data flow, and in this case, it indicates that data will move from A to B.

We can illustrate the code for these components with a producer and a 
consumer. The producer is the initiator and the consumer is the target. We 
must build these components in such a way that they do not know about each 

A B
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other a priori. To do that, we use a pure virtual interface to define the function 
that will be used to transmit data between the initiator and the target. First, 
let’s take a look at the SystemVerilog version of the producer.

46    class producer;
47     
48      put_if put_port;
49    
50      task run();
51    
52        int randval;
53    
54        for(int i=0; i<10; i++)
55          begin
56            randval = $random %100;
57            $display(“producer: sending   %4d”, randval);
58            put_port.put(randval);
59          end
60    
61      endtask
62    
63    endclass : producer
file: 03_tlm/01_put/put.sv

The producer is a class, implying that it is created dynamically. It has two key 
elements, a run() task and a put_port. The run() task is a simple task that 
loops 10 times and puts 10 transactions. To keep things simple, our 
transactions are integers. In practice, a transaction can be an arbitrarily 
complex object such as a struct or a class.

To put transactions, the producer calls put() on the put_port. What is a 
put_port? It is not a port in the traditional Verilog sense. It is a reference to a 
put_if. What is a put_if? A put_if is the virtual interface class shared 
between the initiator (producer) and target (consumer).

39    virtual class put_if;
40      pure virtual task put(int val);
41    endclass : put_if

put_if is a class with a pure virtual task; meaning, the task has no 
implementation. Without an implementation of all of its tasks and functions, 
a virtual class cannot be instantiated by itself. It must be the base class of 
another class that is instantiated. In our case, the class derived from the pure 
virtual put_if is consumer.

68    class consumer extends put_if;
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69      task put(int val);
70        $display(“consumer: receiving %4d”, val);
71      endtask : put
72    endclass : consumer
file: 03_tlm/01_put/put.sv

consumer contains an implementation of put(); the pure virtual task defined 
in put_if. The put() task implementation accepts the argument passed to it 
and prints it. put_if plays a pivotal role in connecting the producer to the 
consumer. A reference to it on the producer side, which we call a port, 
establishes the requirement that there must be an implementation of the 
functions and tasks in the interface to which this object will be bound. The 
consumer is derived from the interface and, therefore, must implement the 
pure virtual task satisfying the requirement.

The top-level module binds the producer to the consumer.

77    module top;
78     
79      producer p;
80      consumer c;
81    
82      initial begin
83        // instantiate producer and consumer
84        p = new();
85        c = new();
86        // connect producer and consumer 
87        // through the put_if interface class
88        p.put_port = c;
89        p.run();
90      end
91    endmodule : top
file: 03_tlm/01_put/put.sv

Notice the assignment statement:

88        p.put_port = c;

It forms the linkage between the producer and the consumer. When new() is 
called on p to create a new instance of producer, the member put_port has 
no value. A run-time failure will occur if put_port.put() is called prior to 
the linkage assignment. Assigning c to p.put_port gives the port a reference 
to the consumer, which contains an implementation of the interface task 
put(). 
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3.4.2 Get

The complement to put is get. In this arrangement, the initiator receives a 
transaction from the target. The flow of control is the same—from initiator to 
target—but the direction of the data flow is the opposite. The initiator gets a 
transaction from the target. In this case, the consumer is the initiator and the 
producer is the target. The consumer initiates a call to the producer to retrieve 
a transaction. 

Figure 3-3  Get Configuration

Figure 3-3 is very similar to Figure 3-2. The only difference is that here the 
arrow points from the target to the initiator instead of the other way around. 
This indicates that the data flows from the target to the initiator. The 
following is the SystemVerilog consumer (initiator).

62    class consumer;
63    
64      get_if get_port;
65    
66      task run();
67        int randval;
68        for(int i=0; i<10; i++)
69         begin
70           get_port.get(randval);
71           $display(“consumer: receiving %4d”, randval);
72         end
73      endtask
74    endclass
file: 03_tlm/02_get/get.sv

The consumer has a task, run(), which iterates 10 times to get 10 transactions. 
Like the producer in the put example, the consumer here has a port. Also like 
the put example, the port is a reference to a pure virtual interface, in this case 
it is called get_if. 

41    virtual class get_if;
42      pure virtual task get(output int t);

A B
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43    endclass : get_if
file: 03_tlm/02_get/get.sv

get_if is a pure virtual interface class that defines the task get(). The target 
(producer) is constructed in a similar fashion to the target in the put example. 
It contains an implementation of the interface task. This producer produces a 
random value between 0 and 99.

48    class producer extends get_if;
49        
50      task get(output int t);
51        int randval;
52        randval = $random % 100;
53        $display(“producer: sending   %4d”, randval);
54        t = randval;
55      endtask
56        
57    endclass : producer
file: 03_tlm/02_get/get.sv

The connection at the top level will look very familiar.

79    module top;
80    
81      producer p;
82      consumer c;
83    
84      initial begin
85        // instantiate producer and consumer
86        p = new();
87        c = new();
88        // connect producer and consumer through the get_if
89        // interface class
90        c.get_port = p;
91        c.run();
92      end    
93    endmodule : top
file: 03_tlm/02_get/get.sv

After creating instances of the producer and consumer by calling new(), the 
two components are connected using a linkage assignment.

3.4.3 Transport

Transport is a bidirectional interface. The interface provides for transactions 
to be sent from the initiator to the target and from the target back to the 
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initiator. Typically, we use this arrangement to model request-response 
protocols. When talking about components with bidirectional interfaces, we 
use the terms master and slave instead of initiator and target. 

Figure 3-4  Bidirectional Transport Configuration

The master (A) does both a put and a get in a single function call. As we saw 
in previous sections, put() and get() tasks each take one argument, the 
argument they are putting or getting. However, the transport() task takes 
two arguments, a request and a response. It sends the request and returns 
with a response. The slave (B) accepts the request and replies with a response. 

Let’s first look at the pure virtual interface.

37    virtual class transport_if;
38      pure virtual task transport(input int request,
39                                  output int response);
40    endclass : transport_if
file: 03_tlm/03_transport/transport.sv

The interface contains a single task, transport(), which takes two 
arguments: a request that is passed to the target and a response that is 
returned back to the initiator.

The master calls transport(), creates a request, and sends it to the slave
via transport. It processes the response that is returned.

45    class master;
46    
47      transport_if port;
48    
49      task run();
50    
51        int request;
52        int response;
53    
54        for(int i=0; i<10; i++)
55          begin

A B
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56            request = $random % 100;
57            $display(“master: sending   request  %4d”,
58                     request);
59            port.transport(request, response);
60            $display(“master: receiving response %4d”,
61                     response);
62          end
63    
64      endtask
65    endclass : master
file: 03_tlm/03_transport/transport.sv

The slave implements the transport() task. In our example, it does some 
trivial processing of the request to create a response.

70    class slave extends transport_if;
71    
72        task transport(input int request, output int response);
73            $display(“slave:  receiving request  %4d”,
74                     request);
75            response = -request;
76            $display(“slave:  sending   response %4d”,
77                     response);
78        endtask
79    
80    endclass
file: 03_tlm/03_transport/transport.sv

The top-level linkage between master and slave works the same way the put 
and get examples work.

85    module top;
86    
87      master m;
88      slave s;
89    
90      initial begin
91        // instantiate the master and slave
92        m = new();
93        s = new();
94    
95        // connect the master and slave through
96        // the port interface
97        m.port = s;
98        m.run();
99      end
100       
101   endmodule : top
file: 03_tlm/03_transport/transport.sv
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The linkage assignment makes the connection between the master and the 
slave. After the assignment completes, the master can use the connection to 
directly call functions in the slave.

3.4.4 Blocking vs. Nonblocking

The interfaces we have looked at so far are blocking. That means that the 
functions and tasks block execution until they complete. They are not allowed 
to fail. There is no mechanism for any blocking call to terminate abnormally 
or otherwise alter the flow of control. They simply wait until the request is 
satisfied. In a timed system, this means that time may pass between the time 
the call was initiated and the time it returns. 

In the put configuration, we have two components, producer and consumer. 
The producer generates a random number and sends it to the consumer via 
put(). Before put() is called, there is no activity in the consumer. The call to 
put() causes activity in the consumer, which prints the value of the 
argument. During the time that the consumer is active, the producer is 
waiting. This is the nature of a blocking call. The caller must wait until the call 
finishes to resume execution.

Now contrast that description with a nonblocking call. A nonblocking call 
returns immediately. The semantics of a nonblocking call guarantee that the 
call returns in the same delta cycle in which it was issued, that is, without 
consuming any time, not even a single delta cycle.

The pure virtual interface that connects the nonblocking slave to the master
looks much like the other pure virtual interfaces we’ve seen. The significant 
difference is that the nb_get() function returns a status value instead of a 
transaction. 

41    virtual class get_if;
42      pure virtual function int nb_get(output int t);
43    endclass : get_if
file: 03_tlm/04_nonblocking/nbget.sv

The master (consumer) must check the status return from nb_get() to 
determine whether the function successfully completed. Notice also that 
we’ve introduced time into the model. The consumer checks every 4 ns to see 
if a value is available.

78    class consumer;
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79    
80      get_if get_port;
81    
82      task run();
83        int randval;
84        int ok;
85    
86        for(int i=0; i<20; i++)
87          begin
88            #4;
89            if(get_port.nb_get(randval))
90              $display(“%t: consumer: receiving %4d”, $time, 
randval);
91            else
92              $display(“%t: consumer: no randval”, $time);
93         end
94      endtask
95    endclass
file: 03_tlm/04_nonblocking/nbget.sv

The producer is organized as a function and a task. The task will be forked 
(spawned) to run as a continuous process. It generates new random values 
that the consumer will grab. However, each random value is only available 
for 2 ns out of a 7 ns cycle. The function is an implementation of nb_get that 
returns the value generated periodically by the run() task.

48    class producer extends get_if;
49    
50      int randval = 0;
51      int rand_avail = 0;
52        
53      function int nb_get(output int t);
54        if(rand_avail)  begin
55          $display(“%t: producer: sending   %4d”,
56                   $time, randval);
57          t = randval;
58          return 1;
59        end
60        return 0;
61      endfunction
62    
63      task run();
64        forever begin;
65          #5;
66          randval = $random % 100;
67          rand_avail = 1;
68          #2;
69          rand_avail = 0;
70        end
71      endtask
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72        
73    endclass : producer
file: 03_tlm/04_nonblocking/nbget.sv

When we run the example, we see that not every nb_get() call succeeds.

4: consumer: no randval
8: consumer: no randval
12: producer: sending    -99
12: consumer: receiving  -99
16: consumer: no randval
20: producer: sending    -39
20: consumer: receiving  -39
24: consumer: no randval
28: producer: sending     -9
28: consumer: receiving   -9
32: consumer: no randval
36: consumer: no randval
40: producer: sending     57
40: consumer: receiving   57
44: consumer: no randval
48: producer: sending    -71
48: consumer: receiving  -71
52: consumer: no randval
56: producer: sending    -14
56: consumer: receiving  -14
60: consumer: no randval
64: consumer: no randval
68: producer: sending     29
68: consumer: receiving   29
72: consumer: no randval
76: producer: sending     18
76: consumer: receiving   18
80: consumer: no randval

The blocking get configuration had only one process—the consumer that 
continually made requests to the producer to send a new value. The 
nonblocking variant has two processes: the consumer regularly polls the 
producer to see if it has a value to grab, and the producer generates new 
values asynchronously with respect to the consumer. Our nonblocking 
producer makes a random value available every 7 ns. It waits 5 ns and then 
generates a new value, and the new value is valid for 2 ns. The flag 
rand_avail is set when a valid random value is available and cleared when 
none is available. 

The implementation of nb_get() for this example must check rand_avail to 
see if there is indeed something to send. If not, it returns a 0 to indicate that 
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the request failed. If there is something available, then it sends it and returns a 
1 to indicate success.

Blocking interfaces are useful for operating two components synchronously. 
Blocking calls wait until the requested operation completes, no matter how 
long that might take. On the other hand, nonblocking interfaces are useful for 
communicating asynchronously. They do not wait and can be used to poll 
targets, as in the example shown.

3.5 Isolating Components with Channels

The previous section discussed simple mechanisms for moving a transaction 
between two processes. In each, the initiator and target were tightly 
synchronized by the transaction interface task call. In this section, we examine 
the case where the initiator and target are more loosely coupled. The 
decoupling is possible using a channel, in this case a FIFO, to manage the 
synchronization between the initiator and the target, rather than relying on 
the two components to synchronize themselves. Here we have two 
components, an initiator A and a target B, plus a FIFO connecting the two 
components. 

Figure 3-5   Two Components Isolated with a FIFO

In the previous examples, one component had a port and the other an export. 
The component with the port makes calls to the component with the export. 
Here both A and B have ports. Instead of the initiator calling the target 
directly, now we have both the initiator and the target calling the FIFO 
channel. The channel provides the functions required by both the initiator 
and the target.

The initiator uses a blocking put() to send transactions to the FIFO, and the 
target uses a blocking get() to retrieve transactions from the FIFO. The FIFO 
buffers the transactions and serves as a synchronizer. The initiator can 
continue putting transactions into the FIFO until it is full. Since the initiator 
uses a blocking put(), the initiator process will block when the FIFO is full. 
Likewise, the target uses a blocking get() and will block when the FIFO is 
empty. Essentially, the producer in this example is like the producer in the 
blocking put example, and this consumer is like the consumer in the blocking 

FIFO
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get example. The FIFO replaces the target and provides the tasks necessary to 
satisfy the interface requirements created by the ports on the producer and 
consumer.

Let’s look at the code. This is the first example that uses the OVM library. The 
OVM library includes a FIFO, called tlm_fifo, which is a parameterized 
class with a variety of interfaces to support blocking and nonblocking 
operations.

This producer looks a lot like the producer in the blocking put example. It 
has a process, run(), that loops 10 times, generating 10 random values and 
sending them to the target via the put_port. 

42    class producer extends ovm_component;
43    
44      ovm_blocking_put_port#(int) put_port;
45    
46      function new(string name, ovm_component p = null);
47        super.new(name,p);
48        put_port = new(“put_port”, this);
49      endfunction
50    
51      task run();
52            
53        int randval;
54        string s;
55        
56        for(int i = 0; i < 10; i++)
57          begin
58            randval = $random % 100;
59            $sformat(s, “sending   %4d”, randval);
60            ovm_report_info(“producer”, s);
61            put_port.put(randval);
62          end
63        global_stop_request(); // OK, we’re done now
64      endtask
65        
66    endclass
file: 03_tlm/05_fifo/fifo.sv

There are two new things to notice. First, the component is derived from 
ovm_component, which is a base class in the OVM library that provides 
essential services for components. It allows components to be connected into 
the hierarchy of named components, and it provides process control for the 
run task. The run task is forked at startup and can be suspended or resumed 
at will.
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The other thing to notice is how put_port is declared. In our simple examples 
above, we created our own pure virtual interface to connect the initiator to the 
target. The OVM library supplies a collection of port and export objects, 
which are wrappers around pure virtual interface references. The port and 
export objects, which are themselves named components, provide a 
connect() function for establishing associations between ports and exports. 
This is a nicer use model compared to using assignment statements.

The consumer is not much different than the consumer in the blocking get 
example.

71    class consumer extends ovm_component;
72    
73      ovm_blocking_get_port#(int) get_port;
74    
75      function new(string name, ovm_component p = null);
76        super.new(name,p);
77        get_port = new(“get_port”, this);
78      endfunction
79    
80      task run();
81    
82        int val;
83        string s;
84    
85        forever
86          begin
87            get_port.get(val);
88            $sformat(s, “receiving %4d”, val);
89            ovm_report_info(“consumer”, s);
90          end
91    
92      endtask
93        
94    endclass
file: 03_tlm/05_fifo/fifo.sv

To connect the producer, consumer, and fifo, we use an environment. An 
environment serves as the top of the hierarchy of named components, and it 
orchestrates the hierarchy construction and testbench execution.

99    class env extends ovm_component;
100     producer p;
101     consumer c;
102     tlm_fifo #(int) f;
103   
104     function new(string name, ovm_component parent = null);
105       super.new(name, parent);
106     endfunction



Forming a Transaction-Level Connection 67
107   
108     function void build();
109       p = new(“producer”, this);
110       c = new(“consumer”, this);
111       f = new(“fifo”, this);
112     endfunction
113   
114     function void connect();
115       p.put_port.connect(f.blocking_put_export);
116       c.get_port.connect(f.blocking_get_export);
117     endfunction
118   
119   endclass
file: 03_tlm/05_fifo/fifo.sv

The connect() function makes the association between the ports on the 
producer and consumer and the corresponding exports on the fifo. The 
run() task is responsible for controlling testbench execution. In this simple 
example, we let the testbench run for 100 ns and then terminate.

3.6 Forming a Transaction-Level Connection

To form a transaction-level connection, you must specify three elements: the 
control flow, the data flow, and the transaction data type. Declaring a 
connection as a port or export identifies the control flow—control flows from 
ports to exports. That is, a port initiates activity and an export responds to it. 
The interface identifies the data flow. A put interface indicates that data flows 
from the initiator (port side) to the target (export side), a get interface 
indicates that data flows from the target to the initiator, and a transport or 
request-response interface indicates a bidirectional data flow.

We declare put_port as a port, so we know the device in which this port is 
declared is an initiator. The interface type is tlm_nonblocking_put_if<>, 
which is one of the put interfaces defined in the TLM library. This port is an 
egress for data objects. Finally, the data type of the object being sent is trans.

In SystemVerilog using OVM, port and export declarations capture these 
three elements. Here is an example:

ovm_nonblocking_put_port #(trans) put_port;

The suffix of the object type is _port, indicating this is a port object. Exports 
use the suffix _export. The interface type is identified by the name between 
the ovm_ prefix and the _port or _export suffix. In this case, that name is 
nonblocking_put, which refers to tlm_nonblocking_put_if. 
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We have seen a producer and a consumer, each of which uses blocking tasks 
to send and retrieve transactions. The blocking tasks reside in the FIFO, an 
object that serves as an intermediary between the two components, otherwise 
known as a channel. The channel transfers data between the two components, 
and it serves as a synchronizing agent.

Putting a FIFO between two components to buffer and synchronize transfers 
is a common idiom in TLM. We will see this idiom frequently in the 
transaction-level testbenches we build using the OVM.

3.7 Summary

Put, get, and transport are fundamental means for synchronizing parallel 
processes and for communicating transaction-level information between 
those processes. These ideas are used extensively in the OVM to build 
transaction-level testbenches. Section 3.5 illustrated transaction-level 
communication using OVM facilities. In the next chapter, we will delve 
deeper into the OVM to show how to build arbitrary hierarchies of class-
based verification components connected with transaction-level interfaces.
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OVM Mechanics
The OVM library provides many facilities for constructing testbenches. In this 
chapter we will take a first look at the essential ones that you will use in 
almost all of your testbenches.

4.1 Components and Hierarchy

The primary structure for building testbench elements is the component. A 
component in OVM is analogous to a module in Verilog. An OVM component 
is constructed from a class, which gives it different characteristics than a 
Verilog module and has different usage implications. Amongst the different 
characteristics is that classes are created at run time, not at elaboration time as 
modules are. Therefore, OVM is responsible for creating the component 
instances and assembling them into hierarchies.

Figure 4-1 illustrates a simple hierarchy of components. Following, we will 
show how to build this hierarchy using the OVM facilities for creating 
components and composing them into hierarchies: 

Figure 4-1  A Simple Hierarchy of Components

c1

child1 child2 child1 child2

env

c2

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_4, 
© Mentor Graphics Corporation, 2009
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The top-most node, env, is the root. The root is distinguished by the fact that it 
has no parent. All other nodes have exactly one parent. Each node has a 
name. The location in the hierarchy of each node can be identified by a unique
full_name (path), which is constructed by stringing together the names of all 
the nodes between the root and the node in question, separating them with a 
hierarchy separator, dot (.). For example, the path to the component that is 
the second child of c2 is top.c2.child2.

A component in OVM is a class derived from ovm_component. The simplest 
components are leaves, those that have no children.

57    class child extends ovm_component;
58    
59      function new(string name, ovm_component parent);
60        super.new(name, parent);
61      endfunction
62    
63    endclass
file: 04_OVM_mechanics/01_hierarchy/top.sv

The constructor has two parameters, the name of the component and a 
pointer to its parent. The name is a simple name, not a hierarchical path. The 
parent provides a place to hook our new component into the hierarchy. A 
child’s fully qualified path name is created by concatenating the child’s name 
to the parent’s full path name, separated by a dot (.). The OVM provides 
methods for retrieving both the name and fully qualified path of a 
component:

string get_name();

string get_full_name();

Subordinate components are instantiated in the build() function which is 
called during the build phase (phases are explained later in this chapter). 
Instantiating a component involves calling new() to allocate memory for it 
and passing the appropriate arguments into the constructor. In component, 
shown below, we instantiate two subordinate components, child1 and 
child2.

71    class component extends ovm_component;
72    
73      child child1;
74      child child2;
75    
76      function new(string name, ovm_component parent);
77        super.new(name, parent);
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78      endfunction
79    
80      function void build();
81        child1 = new(“child1”, this);
82        child2 = new(“child2”, this);
83      endfunction
84    
85    endclass
file: 04_OVM_mechanics/01_hierarchy/top.sv

Like component, env also instantiates two subordinate components, c1 and 
c2. The entire hierarchy is rooted at a module called top in our design. 

131   module top;
132   
133     env e;
134   
135     initial begin
136       e = new(“env”);
137       run_test();
138     end
139   
140   endmodule
file: 04_OVM_mechanics/01_hierarchy/top.sv

The call to new() instantiates the top-level environment. run_test() starts 
execution of the testbench.

In SystemVerilog, modules, interfaces, and program blocks are created during 
elaboration, while classes are created after elaboration, at run time. So, to 
create a hierarchy of classes, we must have an interface, module, or program 
that contains an initial block that starts off the process of building a class-
based component hierarchy. Interfaces are intended to serve as a medium of 
communication between two modules and are not well suited for serving as 
the root of a class-based hierarchy. Either program blocks or modules can be 
used to hold the root. For our simple hierarchy, it doesn’t matter. Later, when 
we connect a class-based component to module-based hardware, we’ll see 
that using a module is preferable to program blocks.

4.1.1 Traversing the Hierarchy

We can explore the data structures used to implement the component 
hierarchy with some methods provided in ovm_component. The children of a 
component are stored in an associative array. This array is not directly 
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accessible, but it can be accessed through a hierarchy API. This API is similar 
to the built-in methods SystemVerilog provides for associative arrays.

int get_first_child(ref string name);

int get_next_child(ref string name);

ovm_component get_child(string name);

int get_num_children();

get_first_child() and get_next_child() work together to iterate over 
the set of children contained in a component. get_first_child() retrieves 
the name of the first child in the list. It returns the name as a reference 
argument. get_next_child() returns the name of the next child in the list. It 
returns 1 if there is a next child name to return or 0 if the end of the list has 
been reached. get_child() transforms the name into a component reference. 

Using these functions, we can traverse the component hierarchy.

73      function void depth_first(ovm_component node,
74                                int unsigned level = 0);
75    
76        string name;
77    
78        if(node == null)
79          return;
80    
81        visit(node, level);
82    
83        if(node.get_first_child(name))
84          do begin
85            depth_first(node.get_child(name), level+1);
86          end while(node.get_next_child(name));
87    
88      endfunction
file: 04_OVM_mechanics/utils/traverse.svh

This function will perform a depth-first traversal of the hierarchy, calling 
visit() at each node. We use get_first_child() and get_next_child()
to iterate through the list of each of the children in each node. For each 
iteration we call depth_first() recursively. For our small design, the result 
is this:

+ env
|  + env.c1
|  |  env.c1.child1
|  |  env.c1.child2
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|  + env.c2
|  |  env.c2.child1
|  |  env.c2.child2

The visit() function uses the node depth and whether or not it is a leaf node 
to print a line for each node.

4.1.2 Singleton Top

Components that don’t have a parent (that is, the parent argument in the 
constructor is null) are called orphans. In OVM, you can create as many 
components without a parent as you like. However, there is no such thing as a 
true orphan. Any component whose parent is null is assigned a built-in 
parent called ovm_top. ovm_top is a singleton instance of ovm_root. It is the 
parent of all components that don’t otherwise have a parent. In fact, env in 
our previous example is a child of ovm_top. Since it has no parent, it is 
automatically given ovm_top as its parent.

A singleton is a well-known, design object-oriented pattern characterized by a 
private (local) or protected constructor and a static get function that returns 
the same pointer no matter how many times it’s called. This means it is only 
possible for one instance to exist, and that instance comes into existence 
automatically when get() is called. ovm_top contains a handle to the 
singleton instance of ovm_root. It is statically initialized by calling 
ovm_root::get(). You can call ovm_root::get() any time, but there is no 
need since ovm_top is provided as a convenience. 

There are a number of beneficial consequences of having a singleton top-level 
component. One is that you can reach any component from ovm_top. If you 
run the hierarchy traversal algorithm on ovm_top, you will reach every
component in the system. Another consequence is that any component, 
including ports, exports, and channels, that is instantiated inside a module is 
reachable from ovm_top. If you want to modify the report handlers in all 
components, for example, you can do so by calling one of the hierarchical 
reporting functions in ovm_top. ovm_top contains all the mechanisms for 
phasing, which is explained later in this chapter.

4.2 Connectivity

Components are connected to each other through TLM ports and exports. 
Ports and exports provide a means for components, or more accurately, 
processes in components, to synchronize and communicate with each other. 
Ports and exports are objects that form a binding point to enable inter-
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component communication. As discussed in the previous chapter, exports 
provide functions and tasks that can be called by ports.

Figure 4-2  Connecting an Initiator to a Target

The connect method on ports and exports is used to bind the two together.

initiator_port.connect(target.export)

This method creates an association, or a binding, between the port and export 
so that the port can now call tasks and functions on the export. For the 
connection to be made successfully, the types of the port and export must 
match. That is, the interface types must be the same, and the type of the object 
being transferred in the interface must be the same.

4.2.1 Connecting across the Hierarchy

Similar to pins in an RTL design, we need to connect to TLM ports across 
hierarchical boundaries. Figure 4-3 uses a simple design to illustrate how to 
make these connections. This design contains a source component with two 
ports that ultimately connect to two exports, one on each of two sink 
components. To connect between these components, we must extend the 
ports and exports to the next level of hierarchy above.

initator
(port)

target
(export)
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Figure 4-3  Connecting Ports and Exports through the Hierarchy

The component source contains two ports, first_put_port and 
second_put_port. These are instantiated in the build function.

65    class source extends ovm_component;
66    
67      ovm_put_port #(trans_t) first_put_port;
68      ovm_put_port #(trans_t) second_put_port;
69    
70      function new(string name, ovm_component parent);
71        super.new(name, parent);
72      endfunction
73    
74      function void build();
75        first_put_port = new(“first_put_port”, this);
76        second_put_port = new(“second_put_port”, this);
77      endfunction
file: 04_OVM_mechanics/02_connectivity/top.sv

...

Similarly, the sink component instantiates an export and instantiates it in the 
build function. The export is connected to an internal channel, fifo, from 
which the component can retrieve objects during run time.

126   class sink extends ovm_component;
127   
128     ovm_put_export #(trans_t) put_export;
129     local tlm_fifo #(trans_t) fifo;
130   
131     function new(string name, ovm_component parent);

source

source_wrapper

sink1

sinker

sink2

env

export to export 
connections

port to export 
connections

port to port 
connections
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132       super.new(name, parent);
133     endfunction
134   
135     function void build();
136       put_export = new(“put_export”, this);
137       fifo = new(“fifo”, this);
138     endfunction
139   
140     function void connect();
141       put_export.connect(fifo.put_export);
142     endfunction
file: 04_OVM_mechanics/02_connectivity/top.sv

...

source_wrapper must create a connection between the internal source
component and its outer boundary. It makes this connection by instantiating 
its own ports that have the same type as the type of the lower-level ports, in 
this case, those that belong to source. 

98    class source_wrapper extends ovm_component;
99    
100     source s;
101     ovm_put_port #(trans_t) put_port1;
102     ovm_put_port #(trans_t) put_port2;
103   
104     function new(string name, ovm_component parent);
105       super.new(name, parent);
106     endfunction
107   
108     function void build();
109       s = new(“source”, this);
110       put_port1 = new(“put_port1”, this);
111       put_port2 = new(“put_port2”, this);
112     endfunction
113   
114     function void connect();
115       s.first_put_port.connect(put_port1);
116       s.second_put_port.connect(put_port2);
117     endfunction
118   
119   endclass
file: 04_OVM_mechanics/02_connectivity/top.sv

After the ports in source_wrapper are instantiated, they are then connected 
to the ports in the lower-level source component via the connect method on 
the ports. Making exports visible to a higher level of hierarchy is done in 
much the same way as we see in sinker.

160   class sinker extends ovm_component;
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161   
162     ovm_put_export #(trans_t) first_put_export;
163     ovm_put_export #(trans_t) second_put_export;
164     
165     sink sink1;
166     sink sink2;
167   
168     function new(string name, ovm_component parent);
169       super.new(name, parent);
170     endfunction
171   
172     function void build();
173       sink1 = new(“sink1”, this);
174       sink2 = new(“sink2”, this);
175       first_put_export = new(“first_put_export”, this);
176       second_put_export = new(“second_put_export”, this);
177     endfunction
178   
179     function void connect();
180       first_put_export.connect(sink1.put_export);
181       second_put_export.connect(sink2.put_export);
182     endfunction
183   
184   endclass
file: 04_OVM_mechanics/02_connectivity/top.sv

The two lower-level sink components and the exports are instantiated in the 
usual way. They are then connected using the connect method on the exports. 
Now we create a port-export connection between source_wrapper and 
sinker, also using the connect function.

192   class env extends ovm_component;
193   
194     sinker s;
195     source_wrapper sw;
196   
197     function new(string name, ovm_component parent = null);
198       super.new(name, parent);
199     endfunction
200   
201     function void build();
202       s = new(“sinker”, this);
203       sw = new(“source_wrapper”, this);
204     endfunction
205   
206     function void connect();
207       sw.put_port1.connect(s.first_put_export);
208       sw.put_port2.connect(s.second_put_export);
209     endfunction
210   
211     task run;
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212   global_stop_request();
213     endtask
214   
215   endclass
file: 04_OVM_mechanics/02_connectivity/top.sv

For new users, it can often be confusing to determine which port or export 
object they should connect, and which object is the argument. You can easily 
figure it out by following the control flow through the system. The general 
rule is that the calling port invokes connect() using the called port or export 
as the argument. Figure 4-4 shows the flow of control through our 
hierarchical system.

Figure 4-4  Control Flow through Ports and Exports

Ports are the site of the invocation and exports are the site of the invoked 
function or task. You can think of ports as calling exports. So, in env, we call 
connect on the put_ports supplying the put_exports as arguments. For port-
to-port and export-to-export hierarchical connections, the calling order is a 
little less obvious. Since the call is made on the port side, you can think of the 
the lowest-level port in the hierarchy as calling interface methods in the 
upper-level port. Similarly, since exports are the site of the call, you can think 
of the upper-level export as calling into the lower-level export. The table 
below summarizes the possible connection types: 

connection type connection syntax

port-to-export port.connect(export);

port-to-port child.port.connect(port);

export-to-export export.connect(child.export);

source

source_wrapper

sink1

sinker

sink2

env
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4.2.2 Note to AVM Users

In AVM-3.0, connections were made in a similar fashion using the connect call 
on ports and exports. In addition, the export-to-export, port-to-export, and 
port-to-port calls were made in different phases, export_connections(), 
connect(), and import_connections(), respectively. In OVM, the order in 
which the connect calls are made is no longer important; they can be made in 
any order. We recommend that you put them in the connect() phase (not to 
be confused with the connect() method on ports and exports).

OVM supports delayed binding, a feature where calls to connect() only 
make a note that a connection is to be made. Later, just before 
end_of_elaboration, the notes are reconciled and the connections made. 
This enables a cleaner use model and is much more forgiving of 
understandable errors where connect() calls were made in the wrong order.

4.3 Phases

Traditional Verilog modules rely on the simulator to elaborate the complete 
design and kick off its execution. Since OVM components are classes, they are 
instantiated and connected, and their execution is initiated outside of the 
Verilog elaborator. Components come into existence by calling class 
constructor new(), which allocates memory and performs initializations. 
Rather than the Verilog run-time engine managing instantiation, elaboration, 
and execution of class-based components, component functionality is broken 
into phases, and the OVM phase controller manages their execution.

Each phase is represented in the component as a virtual method (task or 
function) with a trivial default implementation. These phase callbacks are 
implemented by the component developer, who supplies appropriate 
functionality. The phase controller ensures that the phases are executed in the 
proper order. The set of predefined phases is shown in the following table: 

phase name function/
task order

new function top-down

build function top-down

connect function bottom-up

end_of_elaboration function bottom-up
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Each phase has a specific purpose. Component builders must take care to 
ensure that the functionality implemented in each phase callback is 
appropriate to the phase definition.

new is not technically a phase, in that it’s not managed by the 
phase controller. However, for each component, the constructor 
must execute and complete in order to bring the component into 
existence. Therefore, new() must run before build() or any 
other subsequent phases can execute.
build is the place where new components, ports, and exports are 
instantiated and configured. This is also the recommended place 
for calling set_config_* and get_config_* (see Section4.4).
connect is where components, ports, and exports created in 
build() are connected.
end_of_elaboration is where you can make configuration 
changes, knowing that elaboration is complete. That is, you can 
assume that all components are built and connected.
start_of_simulation executes just before time 0.
run is the only pre-defined task phase. All of the run tasks are 
forked to run in parallel. Each run task continues until its locus of 
control passes the endtask statement or it is explicitly shut down. 
Later in this chapter, we will discuss how to shut down test-
benches.
extract is intended for collecting information relating to coverage 
or other information about how to answer the testbench ques-
tions.
check is where any correctness checking or validation of 
extracted data is done.
report is where final reports are produced.

The simple example below uses ovm_report_info() calls to illustrate the 
order in which phases are executed.

start_of_simulation function bottom-up

run task bottom-up

extract function bottom-up

check function bottom-up

report function bottom-up

phase name function/
task order
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38    class sub_component extends ovm_component;
39    
40      function new(string name, ovm_component parent);
41        super.new(name, parent);
42      endfunction
43    
44      function void build();
45        ovm_report_info(“build”, ““);
46      endfunction
47    
48      function void connect();
49        ovm_report_info(“connect”, ““);
50      endfunction
51    
52      function void end_of_elaboration();
53        ovm_report_info(“end_of_elaboration”, ““);
54      endfunction
55    
56      function void start_of_simulation();
57        ovm_report_info(“start_of_simulation”, ““);
58      endfunction
59    
60      task run();
61        ovm_report_info(“run”, ““);
62      endtask
63    
64      function void extract();
65        ovm_report_info(“extract”, ““);
66      endfunction
67    
68      function void check();
69        ovm_report_info(“check”, ““);
70      endfunction
71    
72      function void report();
73        ovm_report_info(“report”, ““);
74      endfunction
75    
76    endclass
file: 04_OVM_mechanics/03_phases/top.sv

In a top-level component, we create two instantiations of component, each of 
which in turn instantiates two sub_components. The sub_components are 
essentially the same as component; each phase callback simply prints a line 
identifying the phase. When executed, you get the following result:

OVM_INFO @ 0 [RNTST] Running test ...
OVM_INFO @ 0: env.c1 [build] 
OVM_INFO @ 0: env.c1.s1 [build] 
OVM_INFO @ 0: env.c1.s2 [build] 
OVM_INFO @ 0: env.c2 [build] 
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OVM_INFO @ 0: env.c2.s1 [build] 
OVM_INFO @ 0: env.c2.s2 [build] 
OVM_INFO @ 0: env.c1.s1 [connect] 
OVM_INFO @ 0: env.c1.s2 [connect] 
OVM_INFO @ 0: env.c1 [connect] 
OVM_INFO @ 0: env.c2.s1 [connect] 
OVM_INFO @ 0: env.c2.s2 [connect] 
OVM_INFO @ 0: env.c2 [connect] 
OVM_INFO @ 0: env.c1.s1 [end_of_elaboration] 
OVM_INFO @ 0: env.c1.s2 [end_of_elaboration] 
OVM_INFO @ 0: env.c1 [end_of_elaboration] 
OVM_INFO @ 0: env.c2.s1 [end_of_elaboration] 
OVM_INFO @ 0: env.c2.s2 [end_of_elaboration] 
OVM_INFO @ 0: env.c2 [end_of_elaboration] 
OVM_INFO @ 0: env.c1.s1 [start_of_simulation] 
OVM_INFO @ 0: env.c1.s2 [start_of_simulation] 
OVM_INFO @ 0: env.c1 [start_of_simulation] 
OVM_INFO @ 0: env.c2.s1 [start_of_simulation] 
OVM_INFO @ 0: env.c2.s2 [start_of_simulation] 
OVM_INFO @ 0: env.c2 [start_of_simulation] 
OVM_INFO @ 0: env.c2 [run] 
OVM_INFO @ 0: env.c2.s2 [run] 
OVM_INFO @ 0: env.c2.s1 [run] 
OVM_INFO @ 0: env.c1 [run] 
OVM_INFO @ 0: env.c1.s2 [run] 
OVM_INFO @ 0: env.c1.s1 [run] 
OVM_INFO @ 1: env.c1.s1 [extract] 
OVM_INFO @ 1: env.c1.s2 [extract] 
OVM_INFO @ 1: env.c1 [extract] 
OVM_INFO @ 1: env.c2.s1 [extract] 
OVM_INFO @ 1: env.c2.s2 [extract] 
OVM_INFO @ 1: env.c2 [extract] 
OVM_INFO @ 1: env.c1.s1 [check] 
OVM_INFO @ 1: env.c1.s2 [check] 
OVM_INFO @ 1: env.c1 [check] 
OVM_INFO @ 1: env.c2.s1 [check] 
OVM_INFO @ 1: env.c2.s2 [check] 
OVM_INFO @ 1: env.c2 [check] 
OVM_INFO @ 1: env.c1.s1 [report] 
OVM_INFO @ 1: env.c1.s2 [report] 
OVM_INFO @ 1: env.c1 [report] 
OVM_INFO @ 1: env.c2.s1 [report] 
OVM_INFO @ 1: env.c2.s2 [report] 
OVM_INFO @ 1: env.c2 [report] 

You can see that build() runs top-down and the rest of the phases run 
bottom-up. You can also see that each phase completes in all components 
before the next phase begins. Thus, in connect(), for example, you can rely 
on the fact that build() has completed in all components. You will also notice 
that time advances after the run phase. In our example the run() task is 
trivial; it simply delays one time unit (#1).
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run_test(), mentioned previously in Section 4.1, initiates executions of the 
phases. It starts running the phases in order and controls the machinery for 
making sure each phase is complete before the next one begins.

4.4 Config

To increase reusability of components, it’s desirable to sprinkle them liberally 
with parameters that can be externally configured. The config facility 
provides a means to do just this. It is based on a database of name-value pairs
called configuration items1 that is organized hierarchically. Each component 
contains a configuration table of configuration items and, since components 
are arranged in a tree, each element in the database can be uniquely located 
by the location of the component and the name of the configuration item. 

Figure 4-5  Each Component Has a Database of Configuration Items

1. We use the term configuration item instead of parameter to avoid confusion with 
other uses of the term parameter in SystemVerilog.

c1

child1 child2 child1 child2

env

c2
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The ovm_component class contains two sets of methods for putting 
configuration items into the database and for retrieving them later. These are 
set_config_* and get_config_*. The table below shows both sets.

The set_config_* functions place an item in the configuration database in 
the current component, that is, in the component instance in which the 
function is called. These functions each take three arguments, name, 
field_name, and value. The argument name is a path name that represents 
the scope of the components that are to accept this configuration item. name is 
used in get_config_* to locate items in the configuration database. 
field_name is the name of the field and must be unique within the current 
configuration database. value is the value part of the name-value pair and its 
type can be string, int, or ovm_object, depending on which function is 
being called. In addition, set_config_object takes a clone argument to 
indicate whether the object being passed in as the value should be cloned 
before it is put into the configuration database.

The get_config_* functions retrieve items from the configuration database. 
These functions take only two arguments, a field name and an inout variable 
that contains the value of the item located. They also return a bit to indicate 
whether the requested item was successfully located. The get_config_*
functions do not take a path name argument like their set_config_*
counterparts because they use the path of the current component as the point 
of reference to locate configuration items. They are designed to inquire as to 
the value of a configuration item for the current context, that is, the 
component in which the get_config_* function is called.

The search algorithm for retrieving configuration items uses the path name of 
the component requesting a configuration item and the path name inserted in 

Configuration Database Access Functions

set_config_int(string name, string field_name, int value)

set_config_string(string name, string field_name,
                  string value)

set_config_object(string name, string field_name,
                  ovm_object object, bit clone);

get_config_int(string field_name, inout int value);

get_config_string(string field_name, inout string value);

get_config_object(string field_name,
                  inout ovm_object object,
                  input bit clone);
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each item. It starts by looking up the config item in the database in the top-
most component (the singleton top) by field_name. If such an item exists, it 
then asks if the path name specified in the item matches the path name of the 
component. If an item with the specified field_name is not located or the 
path names do not match, then the search proceeds with the child component. 
This process continues until a match is made or the search reaches the 
component where the search originated. 

The path name in each configuration item can be a regular expression. So we 
use a regular expression matching algorithm to match the requested 
component path name and configuration item path name. The effect is to 
match hierarchical scopes.

As an example, consider the simple hierarchy in Figure 4-5. Let’s say that in 
env::build() we issue two set_config_* calls:

112     function void build();
113       c1 = new(“c1”, this);
114       c2 = new(“c2”, this);
115    
116       set_config_int(“c2.*”, “i”, 42);
117       set_config_int(“*”, “t”, 19);
118     endfunction
file: 04_OVM_mechanics/04_config/top.sv

This will cause two configuration items to be entered into the database in env. 
Notice the asterisk (*) in the path names. Path names in calls to 
set_config_* are regular expressions, and wild card characters are used to 
specify multiple scopes over which the configuration item applies. For item i, 
c2.* indicates that in any scope below c2 in the component hierarchy, i will 
take the specified value. In this case, the specified value is 42. If you leave off 
the asterisk, then the configuration item applies only to c2 and not to any of 
its children.

The state of the configuration databases for each component in the hierarchy 
after the set_config_* calls are made is shown in the Figure 4-6,
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Figure 4-6  Hierarchy of Configuration Databases

Now, let’s say that in top.c1.child1 we issue the call:

int i;
...
get_config_int(“i”, i)

The search asks the question What is the configuration value for i in the 
hierarchical scope top.c1.child1? To answer this question, the 
configuration database in env is searched first. The entry for i there says that 
the value of i in scopes matching env.c2.* is 42. However, the component 
from which the request was issued is in the c1 sub-hierarchy. Therefore, there 
is no match, and the get_config_int() call returns a failure status. A
request in any component that is a child of c2 would successfully complete 
and return a value of 42.

Below is the code for the build() function of the child components. This is 
where these components look up configuration values for i and t. 

60      function void build();
61    

c2.* 42i

* 19t

env

env.c1 env.c2

env.c1.child1 env.c1.child2 env.c2.child1 env.c2.child2

item i not found in these scopes item i = 42 in these scopes

item t = 19 in all scopes
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62        string msg;
63    
64        if(!get_config_int(“t”, t)) begin
65          $sformat(msg, “no value for t found in config 
database, using default value of %0d”, t);
66          ovm_report_warning(“build”, msg);
67        end
68    
69        if(!get_config_int(“i”, i)) begin
70          $sformat(msg, “no value for i found in config 
database, using default value of %0d”, i);
71          ovm_report_warning(“build”, msg);
72        end
73    
74      endfunction
file: 04_OVM_mechanics/04_config/top.sv

The following sample shows the printed output from running this design:

# OVM_INFO @ 0 [RNTST] Running test ...
# OVM_WARNING @ 0: env.c1.child1 [build] no value for i found in 
config database, using default value of 91
# OVM_WARNING @ 0: env.c1.child2 [build] no value for i found in 
config database, using default value of 91

The request for configuration item t was successful in all contexts since the 
set_config_int call established that t is available in all contexts. Two of the 
requests for configuration item i succeeded, and two failed. This outcome is 
because we limited the availability of i to only the components at or below 
env.c2. The components at or below c1 cannot see the configuration item i
because of the way we have established the configuration database.

4.4.1 Configuration and Phasing

Now that we know the set of calls for putting items into the configuration 
database and retrieving them, the next task is to effectively apply those 
functions to configure components. Configuration can be used to alter the 
behavior or the structure of a testbench. Typically, the behavior modes and 
structure are determined when the testbench begins, so it is most useful to 
establish the configuration settings in one of the early phases, such as new, 
build, or connect.

From the table of phases on page 79, you can see that new and build are top-
down phases, while all the remaining phases are bottom-up. So, if you want 
to set a configuration item in the database at a higher-level context to be 
picked up by a lower-level one, you must call set_config_* in either the new 
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or build phase. The phases are executed discretely, meaning that each phase 
runs to completion before the next phase begins. You can set configuration 
items in either the new or build phase and retrieve them for use in setting 
behavior modes or modifying topology in the build phase. In your build 
function, first make get_config_* calls to retrieve items from higher levels of 
hierarchy to control the configuration of the current level. Next, add 
set_config_* calls to put configuration items into the database for use by 
components at lower levels of hierarchy. Finally, using the appropriate 
configuration items, instantiate components. It is important to call 
get_config_* first, because the information specified may affect the values 
that are set for lower levels of the hierarchy.

For example, configuring topology involves setting the topology parameters 
in the top-level environment and then applying those parameters in various 
components that are below the top-level environment in the hierarchy. Our 
example has a bus that can have any number of masters or slaves. The 
number of masters and slaves is set in the top-level environment. The bus 
model picks up this configuration information and uses it to construct the 
bus. In the build function of the top-level environment, we instantiate the bus 
model and configure it with the number of masters and slaves we want it to 
have.

129     function void build();
130       set_config_int(“bus”, “masters”, 4);
131       set_config_int(“bus”, “slaves”, 8);
132       b = new(“bus”, this);
133     endfunction
file: 04_OVM_mechanics/05_config_topo/top.sv

The bus model is constructed so that the number of masters and slaves is not 
fixed. Instead, those numbers come from the configuration system. 

90      function void build();
91    
92        int unsigned i;
93    
94        if(!get_config_int(“masters”, masters)) begin
95          $sformat(msg, “\”masters\” is not in the 
configuration database, using default value of %0d”, masters);
96          ovm_report_warning(“build”, msg);
97        end
98    
99        for(i = 0; i < masters; i++) begin
100         $sformat(name, “master_%0d”, i);
101         m = new(name, this);
102       end
103   
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104       if(!get_config_int(“slaves”, slaves)) begin
105         $sformat(msg, “\”slaves\” is not in the configuration 
database, using default value of %0d”, slaves);
106         ovm_report_warning(“build”, msg);
107       end
108   
109       for(i = 0; i < slaves; i++) begin
110         $sformat(name, “slave_%0d”, i);
111         s = new(name, this);
112       end
113   
114     endfunction
file: 04_OVM_mechanics/05_config_topo/top.sv

In the build function for the bus model, the design retrieves the required 
configuration information using calls to get_config_int. In each case, the 
return value is checked to determine whether the requested config item was 
successfully retrieved. If not, a warning message issues, noting that the config 
item was not found and that the default value will be used. From a best-
practices perspective, it is important to make sure that the return value is 
checked and a warning is issued if it indicates failure. Without that check, the 
fact that the default value is being used could go unnoticed. In some cases it 
may be acceptable to use the default; in other cases it is not acceptable. The 
person building the bus model may not know all the circumstances under 
which the model will be used. So it is important to do everything possible to 
make the model robust. Checking status returns and issuing messages as 
appropriate is one way to improve the robustness of a model.

In the loop where we build the masters, the reference to each new master is 
saved in the same variable, m. Each new master overwrites the previous one. 
We don’t bother using an array to save all the component handles. In each 
iteration of the loop, we use $sformat to generate a unique name. The 
constructor, new(), calls super.new(), the constructor in the ovm_component
base class that is responsible for inserting the newly created component into 
the parent’s list of children components. There is no need to explicitly save the 
component handles because the parent component does that for us. The loop 
that creates the slaves is organized the same way.

4.5 Factory

The structure of a testbench is determined by the organization of the 
components into a hierarchy and the way these objects are connected. The 
behavior of the testbench is determined by the procedural code in the phase 
callbacks—build, connect, run, and so forth. There are times when it is 
desirable to modify the behavior or part of the structure externally, that is, at 
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run time, without touching the testbench code. For example, to inject errors 
into a system, you may want to replace the normal driver with an error driver, 
one that intentionally injects errors. Instead of re-coding the environment to 
use a different driver, you can use the factory to do the substitution 
automatically.

The factory provides a means for substituting one object for another without 
having to use your text editor to modify the testbench. Instead of creating the 
object using new(), you invoke a create function in the factory. The factory 
keeps a list of registered objects and, optionally, a set of overrides associated 
with each one. When you create an object using the factory, the list of 
overrides is consulted. If one is present, then the override object is returned. 
Otherwise, the registered object is returned. 

The factory is an OVM data structure. It is global in scope, and only one 
instance exists (that is, it’s a singleton). It serves as a polymorphic constructor, a 
single function that lets you build a variety of different objects. It provides a 
means for registering objects and for specifying overrides. Objects registered 
as overrides must be derived from the object they are overriding. To have a 
single function return multiple objects, each of those objects must be derived 
from a common base class.

An essential component of the factory is the wrapper, a class that wraps the 
object we wish to register with the factory. The factory data structure is a table 
of wrappers indexed by a key. The wrapper has a create() function that 
delegates to the constructor of the wrapped object.

Using the factory involves three steps: registration, setting overrides, and 
creation. In the first step, you register an object with the factory. In the second 
step, you add an override to a registered object. In the third step, you create 
an object with the factory that will return either the originally registered 
object or an override, depending on whether an override was registered for 
the requested object.

4.5.1 How the Factory Works

The term factory was coined for use in the software world by The Gang of 
Four in their book Design Patterns: Elements of Reusable Object-Oriented 
Software. In that book, they identified the pattern, which they call abstract 
factory, as an interface for creating families of related objects. They identified 
the pattern factory method as an interface for creating objects, but defer to 
subclasses for decisions about which object to create. The OVM factory is a 
combination of both of these creation patterns. It provides a means to create a 
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family of objects, and it provides a means for delegating the decision as to 
exactly which object to create to the factory data structure.

The OVM factory is based around a data structure that maps requested types 
to override types. Essentially, the organization is an associative array of type 
handles whose key is also a type handle. When a type is registered with the 
factory, its override type is itself. So by default, when you request an object of 
that type, you get only that type. The factory also provides a means for 
replacing the overrides with other types so you can retrieve override types 
that are different than the registered type.

Figure 4-7  Factory Override Map Data Structure

The following example is a highly simplified toy factory that illustrates how 
the OVM factory works. The toy factory retains the essential structure of the 
OVM factory, but many details have been removed for the purposes of 
keeping the illustration clear. Our toy factory is implemented in four classes, 
two base classes and two derived classes, that do the real work. The two base 
classes are object_base and wrapper_base. All objects registered in the 
factory must be derived (ultimately) from object_base, while wrapper_base
is the base class for the parameterized wrappers. factory is a singleton that 
contains the associative array of type handles that are instances of wrappers. 
Finally, wrappers are derived from wrapper_base and are parameterized 
classes that represent unique types.

For our toy factory, the base classes are trivial:

46    class object_base;
47      virtual function void print();
48        $display(“object_base”);

override map

requested type override type

base type derived override typefactory entry
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49      endfunction
50    endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

59    class wrapper_base;
60      virtual function object_base create_object();
61        return null;
62      endfunction
63    endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

object_base has a virtual print() function, which we use to verify the types 
of objects created by the factory. wrapper_base has the virtual function 
create(), the polymorphic constructor function that is used to create new 
objects.

factory is a singleton, meaning its constructor is local, and it contains a static 
reference to an instance of itself. The only way to create an instance of 
factory is to call factory::get(). factory contains an associative array 
that maps wrapper_base handles of requested types to wrapper_base
handles of override types. 

73    class factory;
74    
75      static factory f;
76      wrapper_base override_map[wrapper_base];
77    
78      local function new();
79      endfunction
80    
81      static function factory get();
82        if(f == null)
83          f = new();
84        return f;
85      endfunction
86    
87      function void register(wrapper_base w);
88        override_map[w] = w;
89      endfunction
90    
91      function void set_override(wrapper_base requested_type,
92                                 wrapper_base override_type);
93        override_map[requested_type] = override_type;
94      endfunction
95    
96      function object_base create(wrapper_base
97                                  requested_type);
98        object_base obj;
99        wrapper_base override_type =
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100         override_map[requested_type];
101       obj = override_type.create_object();
102       return obj;
103     endfunction
104   
105   endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

The register() method adds a new entry to the override map. Initially, 
upon registration, a type has no overrides. Therefore, we set the override map 
to map a type handle to itself. The set_override() method replaces the 
entry in the override map with a new override type. The create() method 
looks up the override for the requested type, delegates creation to the 
override type, and returns the newly created object.

The wrapper class is the most interesting class in our constellation of factory-
related classes. Even though it’s quite simple, it does most of the heavy lifting. 
It is the primary interface to the factory, and most of the operations you do 
with the factory, you do though the wrapper interface. 

118   class wrapper #(type T=object_base) extends wrapper_base;
119   
120     typedef wrapper#(T) this_type;
121   
122     static this_type type_handle = get_type();
123   
124     local function new();
125     endfunction
126   
127     function object_base create_object();
128       T t = new();
129       return t;
130     endfunction
131   
132     static function T create();
133       T obj;
134       factory f = factory::get();
135       assert($cast(obj, f.create(get_type())));
136       return obj;
137     endfunction
138   
139     static function this_type get_type();
140       factory f;
141       if(type_handle == null) begin
142         type_handle = new();
143         f = factory::get();
144         f.register(type_handle);
145       end
146       return type_handle;
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147     endfunction
148   
149     static function void set_override(wrapper_base
150                                       override_type);
151       factory f = factory::get();
152       f.set_override(type_handle, override_type);
153     endfunction
154   
155   endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

All of the functions in wrapper#() are static except for the constructor and 
create_object(). We can execute its static functions without concern for 
whether it has been explicitly instantiated. Since each wrapper specialization 
is a singleton, there can be no more than one instance of it. That means that 
the static member type_handle is unique and can be used as a proxy for the 
wrapped type (that is, the type supplied as a parameter that is used to 
specialize the class). Since the type handle is unique and most of the methods 
are static, we can treat the type handle more like a type than an object.

The type handle is initialized statically. This occurs in the following line:

static wrapper#(T) type_handle = get_type();

The function get_type() is called during static initialization, which not only 
creates an instance of the wrapper, but also registers it in the factory. To 
register a class with factory, you first specialize a wrapper with the type of the 
object you are wrapping. Use a typedef to specialize the wrapper, as shown in 
the following example:

typedef wrapper#(some_type) type_id;

This typedef creates a wrapper for type some_type, a type derived from 
object_base. 

Figure 4-8 illustrates how to use our toy factory with some toy classes A, B, 
and C, which are derived from family_base.



Factory 95
 

Figure 4-8  Family of Classes for the Toy Factory

To register the classes with the factory, each of them has a typedef of the 
wrapper parameterized with its own type. Below is class A. Classes B and C
are similar. Each has a typedef that specializes the wrapper.

169   class A extends family_base;
170   
171     typedef wrapper#(A) type_id;
172   
173     virtual function void print();
174       $display(“A”);
175     endfunction
176   endclass
file: 04_OVM_mechanics/07_toy_factory/top.sv

The following is a short program that exercises the factory.

206     function void run();
207   
208       f = factory::get();
209   
210       h = family_base::type_id::create();
211       h.print();
212   
213       
family_base::type_id::set_override(B::type_id::get_type());
214   
215       h = family_base::type_id::create();
216       h.print();
217   
218     endfunction
file: 04_OVM_mechanics/07_toy_factory/top.sv

The code makes heavy use of the double-colon (::) scope operator. It is used 
to refer to static functions in factory and in wrapper#(). First, we get the 

+print()

family_base

+print()

A

+print()

B

+print()

C
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singleton instance of the factory data structure, then we ask to create an 
instance of object family_base. family_base::type_id::get_type() is the 
static function inside the wrapper specialization for family_base. We verify 
that an instance of family_base is created by calling print(). Next, we set 
an override of B for family_base. Again, we create an instance of 
family_base. This time, since an override is now in place, instead of getting 
an instance of family_base, we get an instance of B. 

Our toy factory does not contain all of the functionality of the factory 
implemented in OVM. The OVM factory provides a mapping from strings 
(names) to type handles. It allows override chaining; whereas, our toy factory 
does not. For example, if B overrides A, and C overrides B, when you ask for an 
instance of A, you will get an instance of C. The OVM factory supports two 
primary base classes, ovm_object and ovm_component, for registered objects, 
and provides create() methods for both; whereas, the toy factory has only 
one primary class, object_base.

4.5.2 The OVM Factory API

In this section, we will look more closely at the OVM factory API. It has two 
parts, the type-based factory and the string-based factory. In the string-based 
factory, requested types are identified by string names. In the type-based 
factory, types are identified by type handles. A single type can be registered 
both ways. The methods for performing the three steps (registration, setting 
overrides, and creation) are slightly different in each way. First, we’ll look at 
the type-based factory. Here is a component called driver that registers itself 
with the type-based factory.

49    class driver extends ovm_component;
50    
51      typedef ovm_component_registry#(driver) type_id;
52    
53      static function type_id get_type();
54        return type_id::get();
55      endfunction
56    
57      function string get_type_name();
58        return “driver”;
59      endfunction
60    
61      function new(string name, ovm_component parent);
62        super.new(name, parent);
63      endfunction
64    
65    endclass
file: 04_OVM_mechanics/06_factory/top.sv
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There are two parts to registration, supplying the typedef of 
ovm_component_registry#() and supplying the static function get_type(). 
The typedef creates a specialization of ovm_component_registry using the 
component type driver as the type parameter. The 
ovm_component_registry#() class has a static initializer that does the 
registration with the factory data structure. So, creating the specialization 
using a typedef causes the class identified by the parameter, driver in this 
case, to be registered into the factory.

Setting an override is a simple matter of calling the set_override function 
and supplying the override type as an argument, as shown below:

105       
driver::type_id::set_type_override(error_driver::get_type());
file: 04_OVM_mechanics/06_factory/top.sv

This string looks like quite a mouthful, but it really is quite simple. Let’s 
deconstruct the statement to fully understand what it means.

driver – the requested type.

driver::type_id – the type of the specialized wrapper.

driver::type_id::set_type_override – the set override function 
in the specialized wrapper. This is a static function, which is why you 
need the :: scope operator to refer to it.

error_driver – the override type.

error_driver::get_type() – the static function that returns the 
type handle for error_driver.

To create an instance of a class using the factory, we call the create method in 
the factory, as shown below:

102       d1 = driver::type_id::create(“d1”, this);
file: 04_OVM_mechanics/06_factory/top.sv

The :: syntax works the same as it does in the previous example—driver 
refers to the requested type, driver::type_id refers to the type of the 
specialized wrappers, and driver::type_id::create refers to the create 
function in the specialized wrapper. This statement creates an instance of 
driver. The difference between calling create() and calling new() is that 
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create() will consult the factory to see if there are any overrides. If so, the 
create() will actually return an object of the override type.

Now let’s look at the string-based factory. The registration mechanism for the 
string-based factory relies on a typedef just like the type-based factory, as 
shown in the line below:

48      typedef ovm_component_registry#(driver, “driver”) 
type_id;

The only difference is the addition of the second parameter of the 
parameterized wrapper. It identifies the name of the type, in this case driver. 
When ovm_component_registry#() is specialized with two parameters, a 
type and a name, the wrapper is registered both with the type-based factory 
and the string-based factory. To set an override using the type name, call the 
factory API directly rather than use the wrapper API, as shown below:

106       factory.set_type_override_by_name(“driver”,
107                                         “error_driver”);

This statement simply says, when requested to create an object whose type 
name is driver, return a type whose name is error_driver instead. The 
greatest difference between using the string-based and type-based factory is 
in how objects are created. In the type-based API, you access the factory 
through the wrapper. In the string-based API, you invoke the factory directly. 
The return type of ovm_factory::create_component_by_name() is 
ovm_component. Contrast this to the return type of 
ovm_component_registry#(T)::create, which is T. To access the intended 
type of the returned object you will have to downcast it, as shown below:

99        assert($cast(d1,
100                    factory.create_component_by_name(“driver”,
101                                                     ““,
102                                                     “d1”,
103                                                     this)));

The call to factory.create_component_by_name() returns an object of type 
ovm_component. The $cast downcasts the returned object to the type of d1, 
which is driver.   Since the type name argument to 
create_component_by_name() is a string, there is no compile-time type 
checking to ensure that the type of the returned object can be cast to the 
required type. So it is important to check the return code of $cast to 
determine whether the cast succeeded.
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The factory string-based API includes create_object_by_name(). It is used 
to create objects derived from ovm_object. You must call $cast to downcast 
the created object for the same reason you call cast on components created 
by the string-based factory API.

4.5.3 String-Based or Type-Based?

The type-based and string-based factory APIs each have their pros and cons, 
but generally, we recommend you use the type-based factory. It is far more 
robust, being removed from errors in string names.

Sometimes there is no other choice; only the string-based factory will do. An 
important example of this is when you want to specify a test name from the 
command line. run_test() takes an optional string argument, test_name. 
Also, this task looks at the command line argument OVM_TESTNAME. If a test 
name is supplied either through the command line or through the argument 
list, run_test() invokes the string-based factory to instantiate the test object.
More about using command line arguments and the factory to choose a test is 
in Section 7.5.

The string-based factory suffers from two major drawbacks. One, just 
mentioned, is that it’s easy to mis-type a type name when you are writing 
code. This can result in a broken testbench because an object is not located, or 
in a subtle bug where the wrong object is instantiated. The second drawback is 
that it’s difficult, if not impossible, to represent parameterized classes using 
string names. For example, consider the parameterized class my_class.

class my_class #(type T=int) extends ovm_object;
typedef my_class#(T) this_t;
typedef ovm_object_registry#(this_t, “my_class#(T)”) type_id;

endclass

We’ve registered it with the string-based factory using the name 
my_class#(T). Seems logical. Now consider two specializations of that class.

typedef my_class#(A) C1;
typedef my_class#(B) C2;

There is no convenient way to register these with the factory using names that 
are unique to the specialization. In our example classes, C1 and C2 are each 
registered using the name my_class #(T). To the factory data structure, it 
looks like you are trying to register two objects with the same name, which is 
an error. The remedy is to use the type-based factory API, which is not 
encumbered with strings.
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class my_class #(type T=int) extends ovm_object;
typedef my_class#(T), this_t;
typedef ovm_object_registry#(this_t) type_id;

endclass

By leaving off the second argument in the typedef of type_id, we are telling 
the factory to register the object without a name, to only use the type handle 
as the lookup key. Now the specializations will each have their own unique 
type handle and will not be erroneously treated as the same object in the 
factory.

The drawback to using the type-based factory is that there is no way to look 
up an object by string. That’s because with no second argument in the 
ovm_object_registry typedef, there is no name under which to file the 
object. When you first use the type-based factory, it may seem a bit 
disconcerting that no name is available. You will quickly discover that a string 
name is not really necessary. In the cases where a name is necessary, as when 
you are getting object names from user input, then the string-based factory is 
available.

4.6 Shutting Down the Testbench

The easiest way to shut down an OVM testbench is to call the global function 
global_stop_request(). This requests that the testbench shut down. If there 
is no reason not to shut down, then the testbench will terminate. 
global_stop_request() delegates to ovm_top.stop_request(). The two 
forms are semantically equivalent.

What reasons would there be to not allow a shutdown? Every component has 
a virtual task stop(). When you call global_stop_request(), this task is 
called for each component whose member enable_stop_request is set to 1. 
When all of the stop tasks have returned, then the testbench shuts down. The 
stop task can be used to clean things up, tell the DUT to shut down, serve as a 
shutdown objection, or anything else you’d like to do before completing the 
current phase. Since it is a task, stop() can consume time. A stop() task can 
disallow the shutdown by blocking. It can wait for some condition to be set or 
delay a fixed time. The stop() task services the shutdown request. When 
stop() returns, it allows the request to be granted.

The following example illustrates how the stop mechanism works. This 
example consists of two producers sending transactions to a consumer 
through a FIFO. Each producer runs independently of the other. We want to 
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make sure that both producers finish their respective jobs. When one finishes, 
the other continues until it is done.

Figure 4-9  Two Producers and a Consumer

In the build() function for the top-level environment, in addition to 
instantiating the various components, we configure a different number of 
iterations in each producer. Since the number of iterations for each is 
different, one producer will finish before the other.

127     function void build();
128       set_config_int(“producer1”, “iterations”, 5);
129       set_config_int(“producer2”, “iterations”, 9);
130       p1 = new(“producer1”, this);
131       p2 = new(“producer2”, this);
132       c = new(“consumer”, this);
133       f = new(“fifo”, this);
134     endfunction
file: 04_OVM_mechanics/09_shutdown/top.sv

We want the testbench to shut down in an orderly fashion when all the 
required work is done, but we don’t want it to shut down prematurely when 
the first producer completes. We use the stop mechanism to accomplish this 
objective. Each producer has a stop task that waits until done becomes 1.

77      task stop(string ph_name);
78        ovm_report_info(“stop”, “initating stop”);
79        wait(done == 1);
80        ovm_report_info(“stop”, “shutting down...”);
81      endtask
file: 04_OVM_mechanics/09_shutdown/top.sv

FIFO

producer 1

consumer

producer 2
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The ph_name argument contains the name of the phase in which stop() was 
called. Even though by default there is only a task-based phase, run(), it’s 
possible to arbitrarily add more task-based phases (and function-based
phases, too). The stop request mechanism works in all task-based phases, and 
a call to   global_stop_request() operates in the current task-based phase.
It causes stop() to be called. Since only one task named stop is possible in 
each component, the ph_name argument identifies the phase in which it was 
called. You can use that to modify the behavior of stop() based on the task-
based phase name.

To use the stop request mechanism, we have to enable it by setting 
enable_stop_interrupt to 1. We do this in the component’s constructor.

42      function new(string name, ovm_component p = null);
43        super.new(name,p);
44        iterations = 10; // default value
45        done = 0;
46        enable_stop_interrupt = 1;
47      endfunction

The main loop of the producer is straightforward. Each iteration of the loop 
generates a random integer and sends it through the put port to the 
consumer. In the following sample, when the loop completes, we set done to 
1, which releases the stop tasks.

66        for(int i = 0; i < iterations; i++) begin
67          randval = $random % 100;
68          $sformat(s, “sending   %4d”, randval);
69          ovm_report_info(“producer”, s);
70          put_port.put(randval);
71        end
72    
73        done = 1;
file: 04_OVM_mechanics/09_shutdown/top.sv

The final part is the run task in the top-level environment:

142     task run();
143       ovm_report_info(“run”, “start”);
144       global_stop_request();
145     endtask
file: 04_OVM_mechanics/09_shutdown/top.sv

Upon starting, the task immediately calls global_stop_request(), which 
causes the stop() tasks to be called in the producers (because 
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enable_stop_interrupt is set to 1 in each). In turn, each producer blocks
until its respective done flag is set. When the producer with the smallest 
number of iterations finishes, it triggers its local done flag and its stop task 
returns. However, because there are outstanding blocked stop tasks, the 
simulation continues. Only when all of the stop tasks complete will the 
simulation terminate.

4.6.1 Timeout

It’s possible that a simulation can deadlock when a bug in a stop task 
prevents it from returning, a blocked call never unblocks, or a forever loop 
never breaks. To prevent the simulation from hanging indefinitely, OVM 
provides two watchdog timeout mechanisms. One is for task phases, and the 
other is for stop tasks.

ovm_root contains two variables, phase_timeout and stop_timeout. Their 
type is the Verilog type time, and their values can be set by 
set_global_timeout and set_global_stop_timeout. The default value for 
both variables is 0, which means timeout is disabled.

When a task-based phase is executed, such as run(), and phase_timeout has 
been set to a value greater than zero, then a separate watchdog process is 
spawned that simply waits until the timeout expires. A fork/join_any
construct is used to spawn these tasks, so if the run tasks finish before the 
timeout expires, then the timeout is ignored. On the other hand, if the timeout 
expires first, then it will initiate a shutdown. The code fragment in 
ovm_root::run_global_phase() that manages the execution of the run 
tasks and the shutdown is this:

fork : task_based_phase

m_stop_process();

begin
 m_do_phase_all(this,m_curr_phase);
 wait fork;

end

#timeout ovm_report_error("TIMOUT",
$psprintf("Watchdog timeout of '%0t' expired.", timeout));

join_any
disable task_based_phase;
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The fork has three processes, including m_stop_process(), which manages 
the stop requests; m_do_phase_all(), which causes all the run tasks to be 
spawned in parallel; and the timeout. 

The disable statement after the join_any causes any remaining processes, 
whatever they happen to be, to be killed. So if the timeout expires first, then 
both the stop process and the run tasks will be killed. If the run tasks finish 
first, then the stop process and the timeout will be killed. Finally, if 
global_stop_request() is called, the stop tasks are called, they all 
complete, and then the stop process will finish first and the run tasks and 
timeout will be killed. 

4.7 Connecting Testbenches to Hardware

Ultimately, all the class-based components must communicate with RTL 
hardware. SystemVerilog provides interfaces for connecting hardware objects 
without having to do so pin-by-pin. Hardware, in this case, means RTL 
components represented using Verilog modules. The language also provides 
virtual interfaces as a means for class-based objects to connect to RTL 
components. Essentially, a virtual interface is a pointer (reference) to an 
interface. 

Figure 4-10  Interface Connecting Testbench to Hardware

To connect class-based testbench components to hardware, you must connect 
the hardware to an interface and then pass a virtual interface into the class-
based environment. Below is an example of a pin-level interface. It is a 
memory interface that has an address (address), output data (wr_data), 
input data (rd_data), a pin that selects the data direction (rw), request and 
acknowledge pins (req and ack), a reset pin (rst), an error indicator (err), 
and of course, a clock (clk).

25    interface pin_if (input clk);
26      bit [15:0] address;
27      bit [7:0]  wr_data;
28      bit [7:0] rd_data;

Driver DUTSystemVerilog
Interface
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29      bit rst;
30      bit rw;
31      bit req;
32      bit ack;
33      bit err;
34    
35      modport master_mp(             
36       input  clk,
37       input  rst,          
38       output address,
39       output wr_data,  
40       input  rd_data,            
41       output req,
42       output rw,           
43       input  ack,
44       input  err );         
45                                     
46      modport slave_mp(              
47       input  clk,
48       input  rst,          
49       input  address,
50       input  wr_data,  
51       output rd_data,            
52       input  req,
53       input  rw,           
54       output ack,
55       output err );         
56                                     
57      modport monitor_mp(            
58       input  clk,
59       input  rst,          
60       input  address,
61       input  wr_data,  
62       input  rd_data,            
63       input  req,
64       input  rw ,
65       input  ack,
66       input  err );
67    endinterface
file: 04_OVM_mechanics/10_vif/top.sv

The interface is composed of several parts. We’ll look at them individually. 
The first part is the header that identifies the name of the interface, in this case 
pin_if. Just below that is the pin bundle that serves as the external view of 
the hardware. The rest of the interface construct contains the declaration of 
three modports. Each modport is a view of the pins in the bundle. In our 
example, each modport contains all the pins in the bundle but with different 
signal directions. The master modport drives transactions on the bus, so 
address, wr_data, req, and rw are all outputs. The device that uses this 
modport will drive those pins. The rest of the signals are inputs. Slave devices 
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use the slave modport, whose signal directions are set opposite the master. 
Monitor devices are passive and do not drive any signals. All of their signals 
are inputs. By choosing the appropriate modport for any device, we can easily 
establish the direction of all the signals and guarantee consistency across all 
devices connected to the bus.

In the top-level module we statically instantiate the clock generator, the 
interface, and the DUT.

150   module top;
151   
152     wire clk;
153   
154     clkgen ck(clk);
155     pin_if pif(clk);
156     dut d(pif.slave_mp);
157   
158     env e;
159   
160     initial begin
161       e = new(“env”);
162       e.set_vif(pif.master_mp);
163       run_test();
164     end
165     
166   endmodule
file: 04_OVM_mechanics/10_vif/top.sv

The initial block dynamically instantiates the class-based testbench 
environment, passes the interface handle (otherwise known as a virtual 
interface) to the newly instantiated environment, and starts running the test. 
Notice that the slave modport is passed to the DUT. This is appropriate since 
the DUT is a memory slave. The master modport is passed into the testbench 
environment and ultimately to the driver. The environment stores the virtual 
interface and passes it to any subordinate components that may need it.

108   class env extends ovm_env;
109   
110     local virtual pin_if vif;
111     driver d;
112   
113     function new(string name, ovm_component parent = null);
114       super.new(name, parent);
115     endfunction
116   
117     function void build();
118       d = new(“driver”, this);
119       d.set_vif(vif);
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120     endfunction
121   
122     task run();
123       #100;
124       global_stop_request();
125     endtask
126   
127     function void set_vif(virtual pin_if _if);
128       vif = _if;
129     endfunction
130   
131   endclass
file: 04_OVM_mechanics/10_vif/top.sv

Notice that the virtual interface, vif, is stored as a local variable. Just like any 
other variable, making it local prevents any unauthorized access to it. Thus, 
access to the interface is controlled. The set_vif() function provides the 
access necessary to set the value of the local virtual interface. Like the top-
level environment, the driver also has a set_vif() function, which operates 
in precisely the same way.

72    class driver extends ovm_component;
73    
74      local virtual pin_if vif;
75    
76      function new(string name, ovm_component parent);
77        super.new(name, parent);
78      endfunction
79    
80      function void set_vif(virtual pin_if _if);
81        vif = _if;
82      endfunction
83    
84      task run;
85        forever begin
86          @(posedge vif.clk);
87          ovm_report_info(“driver”, “posedge clk”);
88          //...
89        end
90      endtask
91    
92    endclass
file: 04_OVM_mechanics/10_vif/top.sv

Hierarchically calling set_vif() functions works fine for small designs or 
situations where you are passing the virtual interface only one or two levels 
deep. In situations where you will pass the virtual interface through more 
levels, or more importantly, you don’t know a priori where in the hierarchy the 
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recipients of the virtual interface will reside, there is a more generalized way 
to pass virtual interfaces. 

For this technique, which we call the interface object technique, create a 
special object to hold the interface, and pass that object to its destination using 
the configuration facility. The special object must be derived from 
ovm_object for it to be accepted by the configuration facility.

72    class pin_vif extends ovm_object;
73    
74      virtual pin_if m_vif;
75    
76      function new(virtual pin_if vif);
77        m_vif = vif;
78      endfunction
79    
80    endclass
file: 04_OVM_mechanics/11_vif/top.sv

The class simply contains a virtual interface of the appropriate type and a 
constructor that sets its value, the latter being a convenience and not strictly 
required. In the top-level module, we create an instance of the object, assign 
the virtual interface, and put it into the configuration database by calling 
set_config_object(). 

175   module top;
176   
177     wire clk;
178   
179     clkgen ck(clk);
180     pin_if pif(clk);
181     dut d(pif.slave_mp);
182     pin_vif vif;
183   
184     env e;
185   
186     initial begin
187       vif = new(pif);
188       set_config_object(“*”, “vif”, vif, 0);
189       e = new(“env”);
190       run_test();
191     end
192     
193   endmodule
file: 04_OVM_mechanics/11_vif/top.sv
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The set_vif() function and the local virtual interface are no longer needed 
in the environment. Other than the top-level module, the only component 
that needs to know about the interface object and the interface is the one that 
needs to use it. In our example, that is the driver.

85    class driver extends ovm_component;
86    
87      local virtual pin_if vif;
88    
89      function new(string name, ovm_component parent);
90        super.new(name, parent);
91      endfunction
92    
93      function void build();
94    
95        ovm_object dummy;
96        pin_vif v;
97    
98        if(!get_config_object(“vif”, dummy, 0)) begin
99          ovm_report_error(“get interface”,
100           “no virtual interface available for driver”);
101       end
102       else begin
103         if(!$cast(v, dummy)) begin
104           ovm_report_error(“interface cast”,
105             “supplied object is not the correct type”);
106         end
107         else begin
108           ovm_report_info(“get interface”,
109             “interface successfully retrieved”);
110           vif = v.m_vif;
111         end
112       end
113     endfunction
114   
115     task run;
116       forever begin
117         @(posedge vif.clk);
118         ovm_report_info(“driver”, “posedge clk”);
119         //...
120       end
121     endtask
122   
123   endclass
file: 04_OVM_mechanics/11_vif/top.sv

While we are able to get rid of the local virtual interfaces and the set_vif
functions, some extra code is required in build() to retrieve the interface 
object from the configuration database and make sure that it is the correct 
type. We retrieve a dummy object from the configuration database using 
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get_config_object(). Then, if the object exists, we cast it to the type of the 
interface object. If the cast succeeds, then we can reach into the interface 
object to get the virtual interface and assign it to our local virtual interface.

The interface object technique of assigning virtual interfaces to components is 
slightly more verbose. It requires you to create an object and put it in the 
configuration database. The recipient has to retrieve the object and check to 
make sure that the object does indeed exist and is of the correct type. 
However, it is much more general and secure than hierarchical calls to 
set_vif(). For one thing, only the components that care about the interface 
must go through the extra work of retrieving the interface object. No other 
components have to do anything. Whereas, when using hierarchical calls to 
set_vif(), all components between the top level and the ones that will use 
the interface must store a local copy of the virtual interface and forward it 
downwards. Any break in the chain means the recipient will not have an 
interface to use. 

For designs that are small, have shallow hierarchies, or only a single virtual 
interface to worry about, the trade-offs are not so obvious. You can 
successfully argue that the set_vif() technique is equivalent to or even 
easier than the interface object technique. However, when your design has 
multiple virtual interfaces and deep hierarchies, the interface object technique 
is clearly superior. As we will see in later chapters, using the configuration 
facility greatly increases the reusability of your components.

4.8 Tests and Testbenches

Through the proper use of configuration, the factory, and the phased build 
process, you can create a verification testbench that allows you to randomize 
more than just the generated stimulus. For example, if a testbench is written 
to allow the number of drivers on a bus to be configurable, then the same 
testbench can be reused across multiple tests, each of which might specify a 
different (possibly random) number of drivers. As you can see, the flexibility 
of OVM allows you to run each of these different tests without having to 
modify the testbench itself.

The OVM also provides an explicit ovm_test class as a container for tests. 
Typically, the top-level module will instantiate an ovm_test, which in turn 
configures and instantiates the testbench. Additional tests can then be written 
as extensions of the base test that include new configuration and factory 
directives, making the tests themselves relatively short, well-defined, and 
easy to maintain. In actuality, the ovm_test is simply another extension of 
ovm_component. Since tests and testbenches are simply components, they too 
can be created and overridden via the factory.
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Figure 4-11  Layering Tests and Testbenches

The UML diagram above illustrates the relationship between the test and the 
environment. Tests and environments (env) are both components. A test 
contains an environment. The environment contains the top-level testbench 
components and their connectivity. For a particular environment, you may 
wish to have multiple tests. Similarly, for a particular test, you may wish to 
exercise it on variations of your environment. The factory lets you swap tests, 
environments, or both.

4.9 Reporting

OVM provides a rich set of classes and functions for generating and filtering 
messages. The OVM reporting facility contains three kinds of functionality:

Displaying messages in a uniform way to various destinations
Filtering messages
Altering control flow as a result of a message being printed

4.9.1 Basic Messaging

ovm_component is a report object, meaning it inherits from 
ovm_report_object. ovm_report_object, derived from ovm_object, is a 
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base class that contains all the functions you will use to issue and control 
messages. The four primary functions for issuing messages are:

function void ovm_report_info( string id,
 string message,
 int verbosity = OVM_MEDIUM,
 string filename = "",
 int line = 0);

function void ovm_report_warning( string id,
 string message,
 int verbosity = OVM_MEDIUM,
 string filename = "",
 int line = 0);

function void ovm_report_error( string id,
                                string message,
                                int verbosity = LOW,
                                string filename = "",
                                int line = 0);

function void ovm_report_fatal( string id,
                                string message,
                                int verbosity = OVM_NONE,
                                string filename = "",
                                int line = 0);

Each of these four functions issues a message that has several components: 
severity, verbosity level, identifier, message, filename, and line number.

Severity.  The severity of the message can be OVM_INFO, OVM_WARNING, 
OVM_ERROR, or OVM_FATAL. The choice of severity changes the final text that is 
printed to include an indication of the severity. It also affects how the message 
is processed. For example, a call to ovm_report_fatal terminates the 
testbench. Other ways in which severity affects message processing are 
discussed in Section 4.9.2.

Identifier.  The identifier of a message is an arbitrary string that is used to 
identify the string. The identifier is printed as part of the message text, and it 
also affects how messages are processed. 

Message.  The message is the body of the message text.

Verbosity.   The verbosity level of a message is an arbitrary number that is 
relative to the current setting of the verbosity threshold. Messages whose 
verbosity level is at or below the threshold will be printed, and those above 
will be ignored. This is a way to filter messages. You can make your testbench 
more verbose by raising the threshold or less verbose by lowering the 
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threshold. The function for changing the verbosity threshold is 
set_report_verbosity_level(int verbosity).

Filename and line number.  These are optional arguments whose role is to 
provide file and line number information about where the message occurred.

4.9.2 Message Actions

Associated with each message is an action that determines exactly how it is 
processed. The action is a bit vector with each bit representing one possible 
action. You can specify multiple actions by turning on one or more bits in the 
vector. So you don’t have to remember which bit is which, OVM has an action 
enum that you can use to specify actions. The following table describes the 
possible actions: 

quit_count and max_quit_count are stored in a global location. You can 
change max_quit_count with the following function:

set_max_quit_count(int q);

A combination of a message’s severity and identifier determine the action it 
takes. The message handler keeps a set of tables that define actions and file 
destinations for messages by identifier and severity. (We’ll see shortly how 
those tables are set up.) First, the message handler looks to see if there is an 
action specified for the combination of identifier and severity for the message. 
If there is none, then the message handler looks to see if there is an action 
specified just for the identifier. If it finds none, then it looks for actions by 

Action Definition

NO_ACTION Do not execute an action.

OVM_DISPLAY Display the message on the standard output device.

OVM_LOG Send the message to a file.

OVM_COUNT Increment quit_count. When quit_count reaches 
a predetermined threshold, terminate the testbench.

OVM_EXIT Terminate the testbench immediately.

OVM_CALL_HOOK Call the appropriate hook function.

OVM_STOP Call $stop after the message has been processed.
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severity. The OVM message facility guarantees that there is always an action 
for each severity. The default actions are shown in the following table.

The only default actions are those determined by severity, as shown in the 
table above. You must set any other action by identifier or the combination of 
identifier and severity with functions designed for just that purpose. 

4.9.3 Message Files

To send messages to a file, you must first open the file and change the 
appropriate message actions to OVM_LOG. A handy place to do this is in the 
build() method of a component, for example:

class component extends ovm_component;

FILE f;

function void build();
f = $fopen("logfile", "w");
set_report_default_file(f);
set_report_severity_action(OVM_INFO, OVM_LOG);
set_report_severity_action(OVM_WARNING, OVM_LOG);
set_report_severity_action(OVM_ERROR, OVM_LOG);
set_report_severity_action(OVM_FATAL, OVM_LOG | OVM_EXIT);

endfunction

Later, when the testbench terminates, you can close the file:

function void report();
$fclose(f);

endfunction

4.9.4 Message Handlers

Each report object has a report handler (ovm_report_handler) associated 
with it. The report handler is not directly accessible by the user, although it 
contains local state data for that report object. The report object contains no 

Severity Default Action

OVM_INFO OVM_DISPLAY

OVM_WARNING OVM_DISPLAY

OVM_ERROR OVM_DISPLAY | OVM_COUNT

OVM_FATAL OVM_DISPLAY | OVM_EXIT
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reporting data itself, only the reporting interface, that is, the functions whose 
work is delegated to the handler. To illustrate this concept, let’s look at the 
hierarchical connectivity example that we discussed in Section 4.2.1. It, like all 
hierarchies of components, has a report handler associated with each 
component.

Figure 4-12  Hierarchical Design with Report Handlers

To change reporting characteristics for an individual component, you need to 
change only its report handler. For example, issuing this call in the 
component sink2:

set_report_id_action(“fsm”, OVM_LOG);

causes all the messages whose identifier is “fsm” to be logged to a file. Since 
this call was made within sink2, it only affects messages issued from sink2. 
Messages issued from any other component in this testbench are not affected, 
even if they also have the “fsm” identifier. To make a similar change on an 
entire sub-hierarchy, you can issue the same call on each component, or you 
can call the hierarchical equivalent of the set_report_id_action() method. 
In this case, you would call:

set_report_id_action_hier(“fsm”, LOG);

env

source_wrapper sinker

source sink1 sink2

rh

rhrh

rh rh rh
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If you make this call in sinker, you will affect sinker and all of the 
components in the hierarchy beneath it. In the figure below, the shaded report 
handlers are those affected. 

Figure 4-13  Affect of a Call to set_report_id_action_hier

The following table identifies all the methods for changing report actions and 
files and their hierarchical equivalents. 

4.9.5 Altering the Flow of Control

Most of the time when you issue a report, the report is displayed or sent to a 
file, and then control resumes at the next sequential statement. There are 
occasions when you’ll want to alter the flow of control based on a message 
that is issued. The most obvious case is terminating the testbench. The EXIT
action terminates the testbench immediately after the message is sent to its 

Local Method Hierarchical Method

set_report_verbosity_level set_report_verbosity_level_hier

set_report_default_file set_report_default_file_hier

set_report_severity_action set_report_severity_action_hier

set_report_id_action set_report_id_action_hier

set_report_severity_id_action set_report_severity_id_action_hier

set_report_severity_file set_report_severity_file_hier

set_report_id_file set_report_id_file_hier

set_report_severity_id_file set_report_severity_id_file_hier

env

source_wrapper sinker

source sink1 sink2

rh

rhrh

rh rh rh
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final destination. The action COUNT increments quit_count, and the testbench 
terminates when quit_count reaches max_quit_count. Typically, you will 
use these actions to do things like prevent an errant program from looping 
indefinitely in an error state, or prevent cascading error messages from 
obfuscating the source of an error. 

function void build();
set_report_max_quit_count(10);
set_report_severity_action(OVM_ERROR,

 OVM_DISPLAY | OVM_LOG | OVM_COUNT);
endfunction

The example build() function above sets max_quit_count to 10 and 
instructs the report handler so that each time an error is issued (that is, 
ovm_report_error() is called) the message displays on the screen, goes to a 
log file, and increments quit_count. The tenth time an error is issued, the 
testbench terminates.

Another way to alter the flow of control when a report is issued is through 
report hooks. The report object provides this set of virtual functions. They 
provide a place where you can gain control when any report is issued or a 
report of a specific severity is issued to do additional filtering, counting, 
sanity checking, and so forth. The OVM report object provides five report 
hooks, one for each severity, and a catch-all hook that is called no matter what 
the severity of the report.

virtual function bit report_hook( string id,
 string message,
 int verbosity,
 string filename,
 int line);

virtual function bit report_message_hook( string id,
    string message,
    int verbosity,
    string filename,
    int line);

virtual function bit report_warning_hook( string id,
    string message,
    int verbosity,
    string filename,
    int line);

virtual function bit report_error_hook( string id,
  string message,
  int verbosity,
  string filename,
  int line);
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virtual function bit report_fatal_hook( string id,
  string message,
  int verbosity,
  string filename,
  int line);

The first thing you might notice is that these functions take exactly the same 
argument as the ovm_report_* functions. The reason is that all of the 
arguments passed to ovm_report_* are passed to the hooks as well. 

The other thing to notice is that each of these functions returns a value, a 
single bit. Processing continues only if both hooks return 1. The default 
hooks, the hooks in the base class that are called when you don’t explicitly 
supply one, always return 1. If the return value is 0, then processing 
terminates, and it is as though the report was never issued. Through the 
return code of the hooks, you can do fine-grained filtering of messages. As an 
example of how you might use return codes, let’s say that you don’t want to 
see messages from your testbench during initialization, which takes 250 
microseconds. After initialization is complete, you want to see all messages. 

function bit report_hook(input string id,
    input string mess,
    input verbosity,
    string filename,
    int line);

return ($time > 250000);
endfunction

The catch-all hook is called first, and then the severity-specific hook is called. 

To enable hooks, you must turn them on by setting the action to 
OVM_CALL_HOOK. A convenient place to do that is in the build() function:

class component extends ovm_component;

FILE f;

function void build();
f = $fopen("logfile", "w");
set_report_default_file(f);
set_report_severity_action(OVM_INFO,

OVM_LOG | OVM_CALL_HOOK);
set_report_severity_action(OVM_WARNING,

OVM_LOG | OVM_CALL_HOOK);
set_report_severity_action(OVM_ERROR,

OVM_LOG | OVM_CALL_HOOK);
set_report_severity_action(OVM_FATAL,

 OVM_LOG | EXIT | OVM_CALL_HOOK);
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endfunction

Hooks are run in the component in which they are implemented. Just as each 
component has its own set of methods, they also have their own hooks. If you 
want to run the same hook in different components, you’ll have to implement 
it in each component. A straightforward way to do this is to create your own 
component base class that inherits from ovm_component and that has your 
hook implementations.

4.10 Summary

An understanding of the concepts discussed in this chapter enables you to 
construct the essential elements of a testbench using the OVM. You can create 
arbitrary hierarchies of class-based components, connect them, configure 
them, run them, and shut them down. Subsequent chapters build upon these 
concepts with additional ones, with explanations along the way for creating 
highly reusable testbench structures.
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5

Testbench Fundamentals
To answer does-it-work questions, we need to stimulate the design with 
known stimulus and determine if the design responds as intended. That is, 
we need to control and observe the DUT.

5.1 Drivers and Monitors

Two of the most fundamental objects in testbenches are drivers and monitors.
A driver converts a stream of transactions into activity on a pin-level 
interface. A monitor does the opposite; it converts activity on a pin-level 
interface into a stream of transactions. Drivers are used to control the DUT by 
applying stimulus, and monitors are used to observe the responses.

To understand how to build and use drivers and monitors, we will start with 
a transaction-level example that illustrates a stimulus generator (memory 
master) connected with a memory slave. The memory slave is a stand-in for a 
driver. Whereas a true driver has a pin-level connection, the memory slave 
does not. What the memory slave and driver have in common is that their 
transaction interfaces and their internal architecture are the same. After 
building an understanding of the transaction-level example, we will expand it 
to use pin-level communication.

The memory master generates a stream of request transactions and sends 
them through the transport channel to the memory slave. The slave processes 
each request and generates responses, which it sends back to the master 
through the transport channel.

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_5, 
© Mentor Graphics Corporation, 2009
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Figure 5-1  Transaction-Level Memory Master and Slave

First, let’s look at the plumbing of this example, that is, the connectivity and 
data flow through the components. The transport channel is composed of two 
opposing FIFOs, one for requests and one for responses, and a transport 
interface. The memory master connects to the transport interface on the 
channel. As you might recall from Section 3.4.3, the transport interface allows 
the memory master to guarantee that requests and responses are 
synchronized. The slave interface, as the name suggests, is for devices that 
must respond to requests; whereas, the transport interface is for devices that 
generate requests. 

Figure 5-2  Request and Response Flow between Master and Slave

The memory master uses its port to repeatedly call transport(), which 
causes a request to be posted in the request FIFO of the transport channel. 
transport() also blocks until a response is available. The slave calls get(), 
which retrieves a request, then processes it, generates a response, and posts 
the response back to the response FIFO using put(). Finally, transport(), 
which has been waiting for a response, can now return the response to the 
memory master.

MEM
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The main loop of the master contains a self-checking test. It generates a 
number of memory writes and saves those writes into a reference queue. 
Then it reads back from all the memory locations just written and compares 
each read value with the entry in the queue.

62        for(int i = 0; i < bursts; i++) begin
63          req = new();
64    
65          addr = $random & addr_mask;
66          size = ($random & ‘h1f) +1; // size > 0 && size <= 32
67    
68          // write loop
69          for(j = 0; j < size; j++) begin
70            req.set_addr(addr);
71            data = $random & data_mask;
72            refq.push_back(data);
73            req.set_wdata(data);
74            req.set_write();
75            req.set_slave_id(0);
76            transport_port.transport(req,rsp);
77            // ignore response
78            addr++;
79            #0;
80          end
81    
82          // read loop
83          addr -= size;
84          for(j = 0; j < size; j++) begin
85            req.set_addr(addr);
86            req.set_wdata(0);
87            req.set_read();
88            req.set_slave_id(0);
89            transport_port.transport(req,rsp);
90            data = rsp.get_rdata();
91            refd = refq.pop_front();
92            if(data != refd) begin
93              $sformat(s, “data mismatch: %x != %x”,
94                       data, refd);
95              ovm_report_error(“compare”, s);
96            end
97            addr++;
98            #0;
99          end
100       end

The main loop contains two sub-loops, a write loop and a read loop. The 
write loop generates a random number of writes. For each write, it generates 
a random data value that is both stored in the reference queue (refq) and put 
into the request object. transport() sends the request to the request channel 
and blocks until a response is available. The read loop reads back the same 
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addresses in the same order and compares each value read with the value in 
the reference queue. If there is a mismatch, then an error is emitted.

The main loop of the memory slave retrieves each request, decodes it, 
processes it, and generates a response.

50        forever begin
51          slave_port.get(req);
52          assert($cast(rsp, req.clone()));
53    
54          addr = req.get_addr();
55          if(req.is_read()) begin
56            data = m.read(addr);
57            rsp.set_rdata(data);
58          end
59          else begin
60            data = req.get_wdata();
61            m.write(addr, data);
62          end
63    
64          slave_port.put(rsp);
65          #1;
66        end
67      endtask

Note that the slave uses a forever loop; whereas, the master has a bounded 
loop. The slave has no way of knowing up front how many requests it will 
process. It’s the master that determines how many requests will be processed. 

To send a response, we create the response object by making an exact copy of 
the request using clone() and then replace response fields as appropriate. 
This course of action is a shortcut when the request and response objects have 
identical types, which is the case here.

The simple producer-consumer arrangement of stimulus generator and 
driver is a common idiom in OVM testbenches. The simplest arrangement is a 
feed-forward stimulus generator that sends transactions to drive packets on a 
bus. More complex arrangements involve things like multiple sequences 
running in parallel through a sequencer to a driver. In all these cases the idea 
is the same: one or more testbench elements generate transactions and 
possibly retrieve responses connected to a driver. The driver converts the 
transaction stream to pin-level activity.
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5.2 Introducing the HFPB Protocol

Throughout this chapter and the next several chapters, we illustrate testbench 
construction using a simple, non-pipelined bus protocol called the HFPB 
protocol. HFPB is an acronym that stands for Harry Foster peripheral bus, 
which is named after Harry Foster, who first suggested it. Harry drew his 
inspiration for the protocol from ARM’s AMBA APB protocol. 

The table below provides a summary of the bus signals for our simple non-
pipelined bus example.

These signals are connected between master and slave, as illustrated in the 
following diagram.

Name Description

clk All bus transfers occur on the rising edge of clk.

rst An active high bus reset.

sel These signals indicate that a slave has been selected. 
Each slave has its own select (for example, sel[0] for 
slave 0). However, for our simple example, we assume a 
single slave.

en Strobe for active phase of bus.

write When high, write access.
When low, read access.

addr[7:0] Address bus.

rdata[7:0] Read data bus driven when write is low.

wdata[7:0] Write data bus driven when write is high.
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Figure 5-3  HFPB Pin Connections

The protocol operates in three states, INACTIVE, START, and ACTIVE. The 
relationships and transitions between the states are illustrated in Figure 5-4.

Figure 5-4  HFPB State Machine

After a reset (that is, rst==1’b1), the bus is initialized to its default INACTIVE 
state, which means both sel and en are de-asserted. To initiate a transfer, the 
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bus moves into the START state, where the master asserts a slave select signal, 
sel, selecting a single slave component. 

The bus only remains in the START state for one clock cycle and will then 
move to the ACTIVE state on the next rising edge of the clock. The ACTIVE 
state only lasts a single clock cycle for the data transfer. Then, the bus will 
move back to the START state if another transfer is required, which is 
indicated when the selection signal remains asserted. However, if no 
additional transfers are required, the bus moves back to the INACTIVE state 
when the master de-asserts the slave’s select and bus enable signals. 

The address (addr[7:0]), write control (write), and transfer enable (en) 
signals are required to remain stable during the transition from the START to 
ACTIVE state. However, it is not a requirement that these signals remain 
stable during the transition from the ACTIVE state back to the START states.

5.2.1 HFPB Write Operation

Figure 5-5 illustrates a write operation for the HFPB bus protocol involving a 
bus master and a single slave. 

Figure 5-5  HFPB Write Transaction

At clock one, since both the slave select (sel) and bus enable (en) signals are 
de-asserted, our bus is in an INACTIVE state, as we previously defined in our 
conceptual state machine (see Figure 5-4) and illustrated in Figure 5-5. The 
state variable in Figure 5-4 is actually a conceptual state of the bus, not a 
physical state implemented in the design. 

The first clock of the transfer is called the START cycle, which the master 
initiates by asserting one of the slave select lines. For our example, the master 
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asserts sel, and this is detected by the rising edge of clock two. During the 
START cycle, the master places a valid address on the bus and in the next 
cycle, places valid data on the bus. This data will be written to the currently 
selected slave component. 

The data transfer (referred to as the ACTIVE cycle) actually occurs when the 
master asserts the bus enable signal. In our case, it is detected on the rising 
edge of clock three. The address, data, and control signals all remain valid 
throughout the ACTIVE cycle. 

When the ACTIVE cycle completes, the bus enable signal (en) is de-asserted 
by the bus master, and thus completes the current single-cycle write 
operation. When the master has finished transferring all data to the slave, the 
master de-asserts the slave select signal (for example, sel). Otherwise, the 
slave select signal remains asserted, and the bus returns to the START cycle to 
initiate another write operation. It is not necessary for the address data values 
to remain valid during the transition from the ACTIVE cycle back to the 
START cycle.

Figure 5-6  HFPB Read Transaction

5.2.2 Basic Read Operation

Figure 5-6 illustrates an HFPB read operation involving a bus master and 
slave zero. Just like the write operation, since both the slave select (sel) and 
bus enable (en) signals are de-asserted at clock one, our bus is in an 
INACTIVE state, as we previously defined in our conceptual state machine 
(see Figure 5-4). The timing of the address, write, select, and enable signals 
are all the same for the read operation as they were for the write operation. In 
the case of a read, the slave must place the data on the bus for the master to 
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access during the ACTIVE cycle, which Figure 5-6 illustrates at clock three. 
Like the write operation, back-to-back read operations are permitted from a 
previously selected slave. However, the bus must always return to the START 
cycle after the completion of each ACTIVE cycle. 

5.3 An RTL Memory Slave

Now, we’ll expand upon our transaction-level memory master and slave 
example by replacing the slave with a driver and a pin-level slave. We’ll also 
introduce a monitor. 

Figure 5-7  Memory Master with Driver, Monitor, and Pin-Level Slave

The first thing to notice about our expanded example is that the memory 
master, memory slave, and transport channel are identical to the ones from 
the previous example. This is an application of reuse, applying components 
unchanged in multiple situations. 

We’ve inserted a pin-level driver and slave between the transaction-level 
master and slave. We’ve also added a monitor. The monitor is the 
complement of the driver; whereas, the role of the driver is to convert a 
stream of transactions into activity on the bus, the role of the monitor is to 
monitor the activity on the bus and convert it to a stream of transactions. 

Like the transaction-level memory slave, the main loop of the driver is a 
forever loop. However, since the driver controls the bus, it is driven by the 
clock. The skeleton of the driver is based around a finite state machine coded 
as a case statement.

forever begin
@(posedge m_bus_if.master.clk)
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...

case(m_state)

INACTIVE : begin
...

  end

START : begin
...

  end

ACTIVE : begin
...

  end

endcase

end // forever

The three-state state machine is represented using a case statement with each 
case containing the actions for that state. The first thing that the driver does in 
the INACTIVE state is get a new transaction.

83              if(!slave_port.try_get(m_req)) begin
84                m_bus_if.sel <= 0;
85                m_state = INACTIVE;
86                continue;
87              end
file: 05_testbench_fundamentals/basic_hfpb/hfpb_driver.svh

Note that we use try_get() instead of get(). try_get() is the nonblocking 
variant of get(). It is a function, and therefore, it cannot consume time. If 
there is nothing in the FIFO to retrieve at the time it’s called, try_get()
returns with a status of 0. If there is something in the FIFO, it will return it 
along with a status code of 1. The reason we use try_get() instead of get()
is because the bus is driven by the clock, and we want to ensure that remains 
the case. We don’t want the act of getting a new request to block the bus and 
possibly cause other devices connected to the bus to function improperly. If 
try_get() does not find an item in the FIFO to retrieve then it executes an 
idle cycle.

In the ACTIVE state, once the transaction completes, we send a response back 
using try_put(). We use try_put(), which is also nonblocking, for the same 
reason we use try_get()—so we don’t block the bus.

140             if(!slave_port.try_put(m_rsp))
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141               begin
142                 ovm_report_error (“MASTER”,
143                                   “put response failed”);
144               end
file: 05_testbench_fundamentals/basic_hfpb/hfpb_driver.svh

The skeleton of the HFPB slave is the same as for the driver. This makes sense 
when you consider that they are both part of the same bus protocol. The 
actions at each state in the state machine are a bit different. Instead of driving 
new transactions onto the bus, as the master does, the slave responds to 
transactions. Once it sees a read or write transaction, it takes information 
from the bus and forwards it to the transaction-level memory slave. The main 
work done by the slave occurs in the START state. 

79            START : begin
80    
81              m_req = new();
82    
83              if (m_bus_if.write)
84                m_req.set_write();
85              else
86                m_req.set_read();
87              m_req.set_wdata(m_bus_if.wdata);
88              m_req.set_addr(m_bus_if.addr);
89              m_req.set_slave_id(id);
90    
91              m_transport_channel.transport(m_req, m_rsp);
92    
93              if(!m_bus_if.write)
94                m_bus_if.rdata = m_rsp.get_rdata();
95    
96            end // START
file: 05_testbench_fundamentals/basic_hfpb/hfpb_slave.svh

It’s in the START state of the HFPB protocol that a transaction begins. The 
action of the HFPB (pin-level) slave is to retrieve information from the pins, 
determine what kind of transaction is in process, create a request object, and 
forward it to the transaction-level slave. The transaction-level slave does the 
actual processing of the request and returns a response back to the pin-level 
slave. The pin-level slave then puts the response on the bus once the 
transaction is complete. For our protocol, only reads cause the slave to change 
the bus pins by placing the data read from the transaction-level slave onto the 
bus.
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5.4 Monitors and Analysis Ports

To answer the does-it-work and are-we-done questions, you must observe the 
DUT’s behavior. You need to extract information concerning the behavior of 
the DUT and pass it to analysis devices dedicated to answering the relevant 
questions. The primary way to do this in OVM is to use analysis ports.

Analysis ports form the boundary between the operational domain and the 
analysis domain in a testbench. The analysis domain is the collection of 
components in the testbench responsible for analyzing the behavior observed 
by a monitor. Analysis components receive their input from analysis ports. A 
monitor sends transactions through an analysis port to an analysis 
component.

Analysis ports and analysis components together are an implementation of 
the observer pattern, a well-known, object-oriented pattern. In this pattern, the 
publisher provides data and the subscribers consume data. Like a magazine 
subscription, each subscriber must subscribe to the publisher before it can 
receive data. Data is transferred to the subscribers only when the publisher 
publishes something. Also like a magazine subscription, each subscriber 
receives a handle to the data from the publisher. The following diagram 
shows the organization of elements in an analysis port:

Figure 5-8  Analysis Port Organization

Before the test begins, each subscriber must register itself with the publisher. 
The publisher maintains a list of subscribers. At some time during its 
operation, the device that contains the analysis port, such as a monitor, calls 
write(), and passes in a transaction object. The analysis port forwards the 
write call to each subscriber, and passes a copy of the transaction object to the 
subscriber.

Analysis components (subscribers) connect to analysis ports through the 
analysis interface. The analysis interface contains the single function write(). 
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write() is a function in SystemVerilog (not a task); therefore, it never blocks. 
Imagine what can happen if write() were a blocking task instead. In that 
case, it could interfere with the operation of the monitor. Since subscribers 
must receive data in the same delta cycle that the write() call is made, 
write() must be nonblocking.

Some analysis components may deliver more than one transaction through an 
analysis port in a single delta cycle. write() must return immediately, but the 
subscriber may do anything, including consume time. The consequence is 
that data can be lost if a subscriber is not prepared to deal with multiple 
transactions in one delta cycle. In this case, you can use an analysis FIFO to 
serve as a FIFO buffer between the analysis port and the analysis component. 
An analysis FIFO is an unbounded tlm_fifo with an analysis interface, that 
is, write(). Since the analysis_fifo is unbounded, write() will always be 
successful. The analysis component then, instead of having an analysis 
interface, connects to the analysis FIFO in the same way any component 
connects to a FIFO. It uses get() or try_get() to retrieve transactions. Of 
course, you can also design an analysis component that includes an analysis 
FIFO internally and makes the FIFO’s analysis export visible as its own.

The monitor for our HFPB protocol uses the same skeleton as the driver and 
the slave. Through the exercise of the state machine, it is able to recognize bus 
transactions. As each transaction is recognized, it is sent to the analysis port 
using the write() call.

55        forever begin
56          @( posedge m_bus_if.clk );
57    
58          if (m_bus_if.rst) continue;
59    
60          state = state_t’({ (m_bus_if.sel != 0),
61                              m_bus_if.en });
62          case( state )
63    
64            INACTIVE : begin
65            end
66      
67            START : begin
68              id = 0;
69              for(id = 0; id < 8; id++)
70               if(m_bus_if.sel[id])
71                 break;
72              if(id >= 8)
73                id = 7;
74    
75              m_trans = new();
76    
77              m_trans.set_addr(m_bus_if.addr);
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78              m_trans.set_wdata(m_bus_if.wdata);
79              m_trans.set_slave_id(id);
80    
81              if (!m_bus_if.write)
82                continue;
83    
84              m_trans.set_write();
85              analysis_port.write(m_trans);
86              ovm_report_info(“MONITOR”, m_trans.do_sprint());
87    
88            end
89    
90            ACTIVE : begin
91              if (m_bus_if.write)
92                continue;
93    
94              m_trans.set_read();
95              m_trans.set_rdata(m_bus_if.rdata);
96              analysis_port.write(m_trans);
97              ovm_report_info(“MONITOR”, m_trans.do_sprint());
98            end
99    
100         endcase
101   
102       end 
file: 05_testbench_fundamentals/basic_hfpb/hfpb_monitor.svh

Any subscriber connected to the analysis port will receive the transaction and 
use it for its purposes.

5.5 Summary

We’ve reviewed the fundamental components of testbenches, drivers and 
monitors. Drivers and monitors are complementary—drivers convert 
transaction streams to pin wiggles, and monitors convert pin wiggles into 
transaction streams. Stimulus generators sending transactions to a driver and 
monitors observing bus activity and converting it to transactions are core 
idioms in testbench construction. In the next chapter, we’ll look at how to 
apply these idioms to build complete testbenches.
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Reuse

        
Building a testbench—designing, coding, debugging, and testing drivers, 
monitors, and other testbench components—can be quite time-consuming. 
An obvious place to improve verification productivity is to reuse 
components. That sounds simple enough, but to make a component truly 
reusable, some thought must be put into its architecture and construction. 
The types of things to think about to make a component reusable include how 
you expect to reuse the component and what degree of freedom the 
component must support.

6.1 Types of Reuse (or Reuse of Types)

The essential means to make a component reusable is to encapsulate all the 
data and functionality behind a well-defined interface. The interface dictates 
how you can modify, operate, and interrogate (extract data from) the 
component. All access is prohibited except that specifically allowed by the 
interface. We’ll consider four techniques for building reusable testbench 
elements: function calls, parameterized classes, inheritance, and 
configuration. Each of these techniques represents a different way of 
modifying structure or behavior using an interface. In each of these 
techniques, information is supplied externally to change the structure or 
behavior of the element. The first three ways to make an element reusable are 
a recap from Chapter 2, where we discussed object-oriented programming.

Function call. An algorithm or other unit of functionality is 
encapsulated into a function call. Whenever you need that 
functionality, you can simply invoke the function rather than cut-
and-paste the code or rewrite it completely in place. Functions 

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_6, 
© Mentor Graphics Corporation, 2009
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can take parameters whose values alter the behavior of the 
function. 

Inheritance. Encapsulating data and functionality of arbitrary 
complexity into a single object hides that complexity so that the 
object can be dropped into place and operated through its 
interfaces. Adding to or modifying the functionality through 
inheritance is a way to reuse the base object and take advantage 
of whatever magic it contains.

Parameterized classes provide a way to build reusable classes. A 
class with parameters forms a template1 which can be 
instantiated multiple times with different parameters to form a 
family of classes. Scalar values and types can be used as 
parameters. Each instance of a parameterized class is called a 
specialization. To identify the specialization the parameters 
become part of the type. 

Run-time configuration. A configurable element can alter its 
behavior or structure through setting flags, switches, or 
configuration variables.

6.2 Reusable Components

To explore how to construct reusable components, let’s consider an example 
of a simple memory master driving a memory through a transport channel, 
all at the transaction level. Let’s look at each of these components in detail to 
see how they are constructed using reuse techniques.2 

Figure 6-1  Master and Slave Connected through a Transport Channel

1. What are called parameterized classes in SystemVerilog are called templates in C++. 
We’ll use the terms template and parameterized class interchangeably.

2. Note that these examples exhibit similar topologies to those in Chapter 5. However, 
the components in this chapter have been designed to illustrate reuse concepts that 
are not discussed in Chapter 5.
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The class header for the memory master shows that the class is derived from 
another parameterized base class, hfpb_master_base. The base class is 
parameterized identically to the derived class.

27    class hfpb_random_mem_master
28      #(int DATA_SIZE=8, int ADDR_SIZE=16)
29        extends hfpb_master_base #(DATA_SIZE, ADDR_SIZE);

We’ve made the assumption that users of the HFPB protocol will likely build 
various kinds of masters to drive transactions on an HFPB bus. The 
hfpb_master_base allows us to put structures and functionality in the base 
class that will be used by all masters. So, in building our master, 
hfpb_random_mem_master, we reuse the functionality provided in the base 
class. 

The HFPB master base class contains a variety of things.

36    class hfpb_master_base
37      #(int DATA_SIZE=8, int ADDR_SIZE=16)
38        extends ovm_component;
39    
40      typedef hfpb_master_base
41        #(DATA_SIZE, ADDR_SIZE) this_type;
42      typedef ovm_component_registry
43        #(this_type) type_id;
44    
45      ‘include “hfpb_parameters.svh”
46    
47      ovm_transport_port
48        #(hfpb_tr_t, hfpb_tr_t) transport_port;
49    
50      ovm_barrier objection;
51      protected hfpb_addr_map #(ADDR_SIZE) addr_map;

It contains a typedef of ovm_component_registry, which causes the 
component to be registered in the factory. It contains a transport port, an 
objection barrier, and an address map. These are all facilities that can be used 
by masters derived from this class.

The HFPB master base class is an example of using object-oriented 
inheritance as a reuse technique. The benefit of using inheritance is that you 
only have to write and test the code for facilities in the base class once. Any 
time you reuse the base class to build a new bus master, you are guaranteed 
consistency in structure of the master. For example, you will always know 
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that masters derived from hfpb_master_base will have a transport port and 
its name is transport_port.

hfpb_random_mem_master, the derived master, randomizes a sequence of 
memory transactions. Some parameters, max_bursts and max_burst_size, 
guide the randomization. max_bursts is the maximum number of bursts to 
be issued by the master in a test, and max_burst_size is the maximum 
number of transactions in a single burst. Instead of hardcoding these values, 
we make them available to the object through the configuration facility.

54        max_burst_size = 16;
55        if(!get_config_int(“max_burst_size”, max_burst_size)) 
begin
56          $sformat(s, “max burst size not specified, using 
default of %0d”, max_burst_size);
57          ovm_report_warning(“build”, s);
58        end
59        $sformat(s, “max burst size: %0d”, max_burst_size);
60        ovm_report_info(“build”, s);
61    
62        max_bursts = 100;
63        if(!get_config_int(“max_bursts”, max_bursts)) begin
64          $sformat(s, “max bursts not specified, using default 
of %0d”, max_bursts);
65          ovm_report_warning(“build”, s);
66        end
67        $sformat(s, “max bursts: %0d”, max_bursts);
68        ovm_report_info(“build”, s);

For each of the two parameters, we first establish a default value of 16 for 
max_burst_size and 100 for max_bursts. Then, for each one, we call 
get_config_int to see if a value has been specified externally. If not, we 
issue a warning to alert the user that no value has been specified and use the 
default. 

It’s important to issue the warning message if get_config_* returns a 0. 
Without the warning, the component silently uses the default value even if that 
was not the intention. It’s possible, for example, that the test writer neglected to 
supply a value in the configuration database for max_burst_size and 
max_bursts. Or, in the call to set_config_int, it’s possible that the test 
writer mistyped one of the names. In that case, not realizing the mistake, the 
test writer would believe that the value was being set as specified. In this case, 
because of the unnoticed misspelling, the get_config_int call finds no value 
to retrieve, and instead, it uses the default. Furthermore, the test behavior is 
different than intended, with no warning that anything might be amiss.   With 
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the warning, the user can later look at the test run to determine if the test 
behaved as intended.

This is an example of applying the config facility to make a component 
reusable. Instead of building separate versions of the component, each with 
different characteristics, we identify the characteristics that might change and 
provide a means for them to be modified without having to alter the 
component itself.

Verification components—drivers, monitors, and so forth—are typically 
protocol-specific, meaning they know about one and only one particular 
protocol. As we saw in the previous chapter, it’s straightforward to build 
protocol-specific components. Protocols, however, often come in variations. 
There might be the 16-bit and 32-bit versions, or the number of masters and 
slaves might change, or some other characteristic of the protocol might be 
configurable. The HFPB protocol, for example, can have a data bus of 
arbitrary size, an address bus of arbitrary size, and the address and data 
buses do not have to be the same size. Rather than build separate components 
for each configuration that we might be interested in, we build a 
parameterized component where the data bus size and address bus size can 
be modified using class parameters. The code inside the component is written 
to be independent of the parameter. That is, it makes no (or limited) 
assumptions about what values the parameter takes so that anywhere the 
value is needed, instead of supplying a constant, you supply the parameter. 
The hfpb_driver is one such parameterized component.

23    class hfpb_driver #(int DATA_SIZE=8, int ADDR_SIZE=16)
24      extends
25        ovm_driver #(hfpb_seq_item #(DATA_SIZE, ADDR_SIZE),
26                     hfpb_seq_item #(DATA_SIZE, ADDR_SIZE));

The driver has two parameters, DATA_SIZE and ADDR_SIZE. Each has a 
default value, so if you do not supply one, the default is used. Any time you 
declare an object of a parameterized type, you create a specialization, a copy 
of the code with the parameter value substituted for its name. You don’t ever 
see the specialized code; the compiler takes care of managing it without your 
intervention. The driver is derived from ovm_driver, a base class that is 
discussed in Chapter 8. ovm_driver is parameterized by the sequence item 
types passed between it and the sequencer. In the case of the HFPB protocol, 
the sequence items are also parameterized with DATA_SIZE and ADDR_SIZE.

The driver code is written so that any place there is a need for either the data 
bus size or the address bus size, DATA_SIZE and ADDR_SIZE parameters are 
used as constants. We can use a parameterized component in many different 
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situations, and by doing so, we maintain independence of any specific value 
of either DATA_SIZE or ADDR_SIZE. Then, by altering the parameters, we can 
affect the component’s structure. Thus, we can reuse our parameterized 
component in systems with different address and data bus widths.

By building all the HFPB components so that they are parameterized in the 
same manner, we can construct an entire testbench that is independent of the 
address and data bus widths. Starting at the top, we supply the ADDR_SIZE
and DATA_SIZE parameters in the top-most module. This is the only place it is 
necessary to specify values for DATA_SIZE and ADDR_SIZE. Everywhere else, 
the values are received through class parameters.

83    module top;
84    
85      parameter int DATA_SIZE = 8;
86      parameter int ADDR_SIZE = 9;
87    
88      env #(DATA_SIZE, ADDR_SIZE) e;
89    
90      initial begin
91        e = new(“env”);
92        run_test();
93      end
94    
95    endmodule
file: 06_reuse/01_TL/top.sv

Those parameters are passed to env, the topmost testbench component, by 
creating a specialization of the parameterized class. env, of course, is a 
parameterized component whose parameters are also DATA_SIZE and 
ADDR_SIZE. Further, any components instantiated in env that depend on the 
address or data bus sizes are similarly parameterized.

42    class env #(int DATA_SIZE=8, int ADDR_SIZE=16)
43      extends ovm_component;
44    
45      hfpb_mem #(DATA_SIZE, ADDR_SIZE) mem;
46      hfpb_random_mem_master #(DATA_SIZE, ADDR_SIZE) mm;
47      hfpb_addr_map #(ADDR_SIZE) addr_map;
48    
49      tlm_transport_channel 
50        #(hfpb_transaction #(DATA_SIZE, ADDR_SIZE),
51         hfpb_transaction #(DATA_SIZE, ADDR_SIZE))
52            transport_channel;
file: 06_reuse/01_TL/top.sv
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6.3 Agents

It’s quite common to find that when you build testbenches you will see a lot of 
repeated instantiations and connections. It is typical to connect drivers and 
monitors in much the same way. Also, you will often find that when you 
repeat certain conglomerations of components, you will want them to be 
consistently configured. Individually instantiating and configuring 
components can introduce error-prone tedium. Agents address this problem. 

Agents are all about reuse. They reuse monitors, drivers, and other 
components that are part of a particular protocol, and they themselves form 
reusable components by creating an interface around the subordinate 
components. An agent contains all the elements of a protocol encapsulated in 
a single package. You can apply the protocol easily in a testbench by 
instantiating this package, rather than separately instantiating a driver, 
monitor, and other protocol-specific components.

The agent is the wrapper around all the components that implement a 
protocol. It serves as the interface to all the protocol components. The 
interface takes several forms: class parameters, ports and exports, a virtual 
interface, and a configuration interface. The class parameters are passed on to 
the subordinate protocol components. The ports and exports provide the 
ingress and egress points for transactions; the virtual interface provides the 
pin-level connection point; and the configuration interface enables you to 
turn on or off various components to customize the agent’s behavior for 
specific applications.

Figure 6-2 shows a simple agent with just a driver and a monitor. The external 
interfaces include an export for a transaction ingress, an analysis port (which 
makes available all bus transactions), and a virtual interface for pin-level 
connections to the bus. 

Figure 6-2  Simple Agent with a Driver and a Monitor

DRIVER MONITOR

has_driver = 1
has_monitor = 1



142 Agents
In some cases, you may not need both a monitor and a driver. Say you only 
need the driver. You can still use the agent and just turn off the monitor. The 
agent uses the configuration system to determine which internal components 
are enabled or disabled. The has_driver and has_monitor flags (in this case) 
are used to select which components are enabled.

 

Figure 6-3  Simple Agent with Driver Disabled

The simple agent with the driver turned off functions simply as a monitor. 
Conversely, you can turn off the monitor and operate the device as a driver. 
Of course, it doesn’t make sense to turn off both the driver and monitor 
because then the agent would not do anything. 

Figure 6-4  Simple Agent with the Monitor Turned Off

If you only want to use either a driver or a monitor, why bother using the 
agent? Why not just simply instantiate a driver or a monitor as required? The 
reason is simple: reuse. If we instantiate only a driver in the environment and 
later decide we need a monitor, then we have to get the text editor out and 
change the environment code to instantiate the monitor and connect it. Since 
we used an agent, we can just turn on the has_monitor switch and not have 
to modify the environment code at all.

DRIVER MONITOR

has_driver = 0
has_monitor = 1

DRIVER MONITOR

has_driver = 1
has_monitor = 0
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6.4 Reusable HFPB Protocol

The HFPB agent is a highly parameterized and configurable device. It 
contains all of the protocol-specific components needed for the HFPB 
protocol in one instantiable component. This includes masters, drivers (we’ll 
explain the difference shortly), sequencer, slaves, and a coverage collector. 
The connections between these components are specified in the agent. Like 
the simple agent discussed above, this agent has class parameters, a collection 
of transaction-level ports and exports, a virtual interface for pin-level 
connections, and a configuration interface. 

Figure 6-5  HFPB Agent

The parameters in the agent’s class header, DATA_SIZE and ADDR_SIZE, are 
used in creating the internal structure of the agent.

138   class hfpb_agent #(int DATA_SIZE=8, ADDR_SIZE=16)
139     extends ovm_agent;
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The external connections include a virtual interface for pin-level connections, 
a transport export for traditional TLM use, a sequence pull port for 
connecting to a sequencer, an array of slave exports (one for each slave), and 
an analysis port for transmitting transactions recognized on the pin-level bus.

142     virtual hfpb_if #(DATA_SIZE, ADDR_SIZE) m_bus_if;
143   
144     ovm_transport_export
145       #(hfpb_transaction #(DATA_SIZE, ADDR_SIZE),
146         hfpb_transaction #(DATA_SIZE, ADDR_SIZE))
147           transport_export;
148   
149     ovm_seq_item_pull_port
150       #(hfpb_seq_item#(DATA_SIZE, ADDR_SIZE),
151         hfpb_seq_item#(DATA_SIZE, ADDR_SIZE))
152           seq_item_port;
153   
154     ovm_slave_export
155       #(hfpb_transaction #(DATA_SIZE, ADDR_SIZE),
156         hfpb_transaction #(DATA_SIZE, ADDR_SIZE))
157           slave_export [];
158   
159     ovm_analysis_port
160       #(hfpb_transaction #(DATA_SIZE, ADDR_SIZE))
161           analysis_port;

The agent contains a collection of protocol components. Notice that they are 
all declared as local, except for the sequencer. All access to these components 
is through the interfaces just listed and not directly to the components. This 
data hiding helps us ensure that the agent remains reusable by not allowing 
users to form improper dependencies on the internal objects of the agent. 

164     local hfpb_master #(DATA_SIZE, ADDR_SIZE) master;
165     local hfpb_driver #(DATA_SIZE, ADDR_SIZE) driver;
166     local hfpb_slave #(DATA_SIZE, ADDR_SIZE) slave [];
167     local hfpb_monitor #(DATA_SIZE, ADDR_SIZE) monitor;
168     local hfpb_coverage #(DATA_SIZE, ADDR_SIZE) cov;
169     local hfpb_talker #(DATA_SIZE, ADDR_SIZE) talker;
170     hfpb_sequencer #(DATA_SIZE, ADDR_SIZE) sequencer;

The reason the sequencer is not declared as local is because it is necessary to 
access the sequencer in order to operate it. In our HFPB agent we have both a 
master and a driver. The difference between a master and a driver is that the 
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master has a transport export and the driver has a seq_item_pull_port for 
sequences, which is connected to a sequencer. (We’ll discuss sequences and 
sequencers at length in Chapter 8). Also, the objects accepted on the input of 
the master must be derived from ovm_transaction and the objections 
accepted by the driver must be derived from ovm_sequence_item. These are 
two different means for moving request and response transactions into and 
out of the agent. The master is used for traditional structural transaction-level 
models, and the driver is for processing transactions (in the form of sequence 
items) generated by sequences. The HFBP protocol allows for exactly one 
master and one or more slaves, so the master and driver are mutually 
exclusive. It doesn’t make sense in this protocol to have more than one device 
driving the bus. 

An important thing to observe is that the interfaces and internal components 
have class parameters that are identical to the agent’s, that is, DATA_SIZE and 
ADDR_SIZE. By creating a family of components for the HFPB protocol that 
are parameterized identically, we can pass parameters and avoid specifying 
the values of those parameters more than once.

Not all of the internal components and interfaces are instantiated each time 
the agent is used. Only those that are needed for the specified configuration 
are created. Rather than create separate agents for each possible 
configuration, which would be very clumsy, we use the configuration facility 
in OVM to change the structure of the agent. Our HFPB agent has a number 
of configuration parameters that control its structure.

175     local bit has_monitor;
176     local bit has_coverage;
177     local bit has_talker;
178     local bit has_master;
179     local bit has_driver;
180     local bit has_sequencer;
181     local int unsigned slaves;
182     local hfpb_vif #(DATA_SIZE, ADDR_SIZE) vif;

In build() and connect() the agent uses the values of these configuration 
parameters to control which sub-components are instantiated and how they 
are connected. The value for each configuration parameter is obtained 
through calls to get_config_int (or, in the case of vif, get_config_obj). In 
the agent’s build() function is a series of calls to get_config_* to obtain all 
the configuration information needed by this component.

199       if(!get_config_int(“has_monitor”, has_monitor)) begin
200         has_monitor = 0;
201         monitor = null;
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202       end
203   
204       if(!get_config_int(“has_coverage”,
205                          has_coverage)) begin
206         has_coverage = 0;
207         cov = null;
208       end

. . .

As the build() function obtains all the configuration parameters, it also does 
any necessary error checking and consistency checking. Each get_config_*
call is encased in a conditional statement that checks the status of the call. If 
the call fails, meaning there is no item with the specified name for the current 
scope in the configuration database, then we make sure the configuration 
parameter is set to a legal value. Other variable settings are also made, as 
appropriate. For example, if has_monitor is not supplied, then we make sure 
it is set to 0 and the monitor handle is null. If has_coverage is set to 1 we also 
set has_monitor to 1 because it would not make any sense to have a coverage 
collector and no monitor. And so on.

Further down in build, we use the configuration parameters to construct the 
internals of the agent. As an example, if has_master is set, then we instantiate 
the master component and the transport export that it will use to connect to 
external components.

284       if(has_master) begin
285         master = new(“master”, this);
286         transport_export = new(“transport_export”, this);
287       end

Later, in the connect phase, we will again use the has_master configuration 
parameter, this time to determine whether to connect to the transport export.

340       if(has_master) begin
341         transport_export.connect(master.transport_export);
342       end

This check is necessary because if has_master is 0, then we know that neither 
the master component nor the transport export were instantiated. Checking 
the value of has_master again ensures that we don’t attempt to connect 
components that were not instantiated.
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The virtual interface vif is also obtained through the configuration facility 
using the interface object technique described in Section 4.7. Strictly speaking, 
the interface object is not a configuration parameter. Virtual interfaces are 
part of the connectivity of the design. If you leave out the virtual interface, it’s 
likely the agent won’t work correctly in the design.

We can use our highly configurable agent in a variety of ways. The table 
below summarizes some of the interesting configurations

 

Mode Config Settings

Monitor has_monitor = 1
has_coverage = don't care
has_talker = don't care
has_master = 0
has_driver = 0
has_sequencer = 0
slaves = 0

Master has_monitor = don't care
has_coverage = don't care 
has_talker = don't care
has_master = 1
has_driver = 0
has_sequencer = 0
slaves = 0

Driver has_monitor = don't care
has_coverage = don't care
has_talker = don't care
has_master = 0
has_driver = 1
has_sequencer = 0
slaves = 0

Sequencer has_monitor = don't care
has_coverage = don't care
has_talker = don't care
has_master = 0
has_driver = 1
has_sequencer = 1
slaves = 0
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In monitor mode, all the components are turned off except the monitor. The 
agent then functions strictly as a monitor. You can similarly configure master 
mode by turning off everything except the master and then operate the agent 
solely as a master. You can turn on or off any component or subset of 
components in the agent.

By encapsulating all of the protocol-specific components in a single 
component called an agent, and by employing the OVM configuration 
facility, you can create a single component that can be used for a variety of 
applications. One reason for all this configurability is to enable reuse of block-
level testbench components, unchanged, in a system-level testbench. We will 
discuss this in detail in Chapter 9.

6.5 Agent Example

As an example of using an agent, we’ll transform the design shown in Figure 
6-1 to use an agent instead of a transport channel. We’ll also add a second 
memory. 

Figure 6-6  An Example Using an Agent

In this example, the agent serves as the bus model. It contains the master and 
slaves and all the connections between them. In addition, it contains a 
monitor. For this example, we configure the agent in this way:

80        set_config_int(“hfpb_agent”, “has_monitor”, 0);
81        set_config_int(“hfpb_agent”, “has_master”, 1);
82        set_config_int(“hfpb_agent”, “slaves”, 2);
83        set_config_int(“hfpb_agent”, “has_talker”, 0);
84        set_config_object(“*”,       “addr_map”, addr_map, 0);
file: 06_reuse/02_RTL/top.sv
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The monitor, master, and talker are turned on, and the bus is configured to 
have two slaves. Additionally, an address map is supplied, which identifies 
which part of the address space each memory slave occupies. A talker is a 
subscriber device connected to the analysis port. It simply prints out the 
transactions recognized by the monitor. The talker is turned on when you 
want to see a printed report of all the transactions that go through the agent. 
Given this particular configuration, we are effectively building a topology 
shown in Figure 6-7. 

Figure 6-7  Complete Topology of Agent Example

The top-level module for this design is similar to the one described in the 
example in Section 6.2. Like that example, the values for the DATA_SIZE and 
ADDR_SIZE parameters are set here and passed into the class-based 
environment, which in turn, passes them on to the agent.

120   module top;
121   
122     parameter int DATA_SIZE = 8;
123     parameter int ADDR_SIZE = 9;
124   
125     env #(DATA_SIZE, ADDR_SIZE) e;
126     hfpb_vif #(DATA_SIZE, ADDR_SIZE) hfpb_vif_obj;
127   
128     clk_rst cr();
129     clock_reset ck (cr);
130     hfpb_if #(DATA_SIZE, ADDR_SIZE) bus_if (cr.clk, cr.rst);
131   
132     initial begin
133   
134       e = new(“env”);
135       hfpb_vif_obj = new(bus_if);
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136       set_config_object(“*”, “hfpb_vif”, hfpb_vif_obj, 0);
137   
138       fork
139         ck.run();
140       join_none
141   
142       run_test();
143     end
144   
145   endmodule
file: 06_reuse/02_RTL/top.sv

In addition, we use the interface object technique described in Section 4.7 to 
pass the virtual interface into the class-based environment.

Through the application of parameterized classes and the OVM configuration 
facility we are able to create a single component, the HFPB agent, that enables 
us to realize a variety of topologies and configurations of HFPB protocol 
components. 

6.6 Summary

One of the primary keys to improving the productivity and reliability of your 
verification flow is reuse. Reusing components saves time by not having to 
write new code. Reused components are more robust by virtue of the fact that 
they have been used in multiple applications. Reusable components don’t fall 
out for free; you have to put some thought into how you will reuse a 
particular component. Fortunately, SystemVerilog and OVM provide some 
facilities that encourage the development of highly reusable testbench 
elements.
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Complete Testbenches
To answer does-it-work and are-we-done questions, we need more than just 
drivers and monitors. We need to collect coverage information to answer are-
we-done questions; we need a reference model and a mechanism to compare 
the function of the reference model to answer does-it-work questions; and we 
need a control mechanism to shut down the testbench at the appropriate time. 
Finally, we need some adapters and connectors to put the whole thing 
together.

7.1 Floating Point Unit

This and subsequent chapters illustrate testbench construction techniques 
using a floating point unit (FPU) design. This design accepts a pair of floating 
point operands and an operator, and computes the result. This section 
presents an example that uses the transaction-level FPU to illustrate the 
construction of an OVM coverage collector. The figure below shows the 
organization of the example. 

Figure 7-1  Simple FPU Testbench with Coverage

CALC FPUTRANSPORT
TAP

FPU
COVERAGE

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_7, 
© Mentor Graphics Corporation, 2009
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The calculation generator, CALC, sends randomized arithmetic calculations to 
the FPU in the form of FPU request transactions. The FPU performs the 
calculation and returns a response transaction that contains the result of the 
calculation. A tap is connected between the stimulus generator and the DUT. 
The tap’s role is to form requests and responses into pairs and send the pairs
to analysis components via an analysis port.

The transaction-level FPU is a simple device. The kernel of the model is the 
classic transaction-level modeling idiom for slaves: getting a request, 
processing it, and returning a response.

58        forever begin
59          get_port.get(req);
60          rsp = compute(req);
61          put_port.put(rsp);
62        end
63      endtask

The communication interface to the FPU is handled via an embedded 
tlm_transport_channel (see “Transport” on page 58). To simplify coding of 
the run() task, we declare a get_port and a put_port to connect to the 
internal slave side of the transport channel. The get_port is for retrieving 
requests, and the put_port is for returning responses.

23    class fpu_tlm extends ovm_component;
24    
25      ovm_transport_export #(fpu_request, 
26                             fpu_response) transport_export;
27      
28      local tlm_transport_channel #(fpu_request, 
29                                    fpu_response) mstr_chan;
30      local ovm_blocking_get_port #(fpu_request)  get_port;
31      local ovm_blocking_put_port #(fpu_response) put_port;

44      function void connect();
45        transport_export.connect(mstr_chan.transport_export);
46        
get_port.connect(mstr_chan.blocking_get_request_export);
47        
put_port.connect(mstr_chan.blocking_put_response_export);
48      endfunction

The heart of the compute function is a case statement that performs the 
requested arithmetic operation.

75        case(op)
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76          OP_ADD: result = req.a + req.b;
77          OP_SUB: result = req.a - req.b;
78          OP_MUL: result = req.a * req.b;
79          OP_DIV: 
80            if (req.b <= 1.0e-38 && req.b >= -1.0e-38)
81              result = _nanf(); // div by zero
82            else
83              result = req.a / req.b;
84          OP_SQR:
85            if (req.a < 0.0)
86              result = _nanf();
87            else
88              result = req.a ** 0.5; // square root
89        endcase

The case statement switches on the requested operation, and each of the case 
branches performs a specific computation. The divide case first checks to see 
if the divisor is zero, since division by zero is undefined. In the RTL version of 
the FPU, a divide-by-zero exception will be raised when a division operation 
is selected and the divisor is zero. The square root branch checks to see if its 
operand is less than zero, since the square root of a negative number is also 
undefined. In both cases, the result is set to NaN, meaning not a number, 
which is the IEEE floating point standard value for undefined values.

The key design consideration of the transport tap is that it doesn’t consume 
any time. That is, there must be no delta cycle delay between the transport 
call in the generator and the transport call in the slave. To meet this 
requirement, we implement the blocking transport interface directly using an 
ovm_blocking_transport_imp. Our implementation of transport()

forwards the request downstream and the response back upstream. It also 
forms the request and response into a pair and sends it out an analysis port.

89      task transport(input fpu_request req,
90                     output fpu_response rsp);
91    
92        fpu_pair pair;
93    
94        transport_port.transport(req, rsp);
95        pair = new(req, rsp);
96        pair_ap.write(pair);
97        
98      endtask
file: 07_complete_testbenches/01_tlm_reference/top.sv

By supplying an implementation instead of connecting to a channel, we avoid 
any delays associated with moving data through the channel.
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7.2 Coverage Collectors

A key component in answering the are-we-done question is the coverage 
collector. Its role, as the name suggests, is to collect functional coverage 
information as the simulation proceeds. Coverage is a quantitative measure of 
how much of the design a test has exercised. Coverage collectors obtain 
information about what has been exercised and use it to calculate the answer 
to are-we-done questions.

Coverage collectors are constructed in OVM as extensions of the 
ovm_subscriber abstract base class. As you can see below, the subscriber has 
an implementation of the analysis interface that contains a single nonblocking 
function, write().

virtual class ovm_subscriber #(type T = int) 
  extends ovm_component;

  typedef ovm_subscriber #(T) this_type;

  ovm_analysis_imp #(T, this_type) analysis_export;
  
  function new(string name, ovm_component parent);
    super.new(name, parent);
    analysis_export = new( "analysis_imp", this );
  endfunction
  
  pure virtual function void write( input T t );
    
endclass

Since it is an abstract class, you must extend ovm_subscriber and define 
your own implementation of the write() function to record the coverage. 
The ovm_analysis_imp binds the connector to the actual interface 
implementation. We call it analysis_export because, externally, it looks 
exactly like an export, in that it provides an implementation to the calling 
port. When you extend ovm_subscriber, you simply connect the 
analysis_export to the desired analysis_port, and you’re in business.

The implementation of the write() function collects data from the object 
passed in as its argument and processes it. The processing can be of any sort, 
as long as it maintains the nonblocking semantic. SystemVerilog provides the 
covergroup construct to aggregate and process the actual coverage data. 
Usually, the write() method will copy relevant fields of its input transaction 
into a class variable that is then sampled by the covergroup. In effect, the role 
of the subscriber is to provide a means to connect the covergroup to other 
OVM components that feed the subscriber data to analyze.
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In our FPU example, the coverage collector that is connected to the tap serves 
a dual role. It collects coverage, of course, and it shuts down the simulation 
when a coverage threshold is reached. 

The work of the coverage collection is performed by a covergroup embedded 
in the subscriber. This particular covergroup, called fpu_cov, has a single 
coverpoint, cons_op, which counts FPU operations. For this particular 
covergroup, 100 percent coverage is reached when each operation is executed 
twice.

57      covergroup fpu_cov;
58        cons_op : coverpoint m_op {bins adds = (OP_ADD [* 2]);
59                                   bins subs = (OP_SUB [* 2]);
60                                   bins muls = (OP_MUL [* 2]);
61                                   bins divs = (OP_DIV [* 2]);
62                                   bins sqrs = (OP_SQR [* 2]); }
63      endgroup

Of course, the implementation of covergroups and the criteria for reaching 
full coverage is application-specific. This particular covergroup is used to 
illustrate the concept.

The write() function has three responsibilities in our coverage collector. It 
copies data from the transaction passed into a class variable so the data is 
visible to the covergroup, it calls sample() on the covergroup, and it tests to 
see if the coverage threshold has been reached. The call to sample() instructs 
the covergroup to look at the current values of the relevant covered variables 
and update its counts.

78      function void write(input fpu_pair t);
79    
80        real coverage;
81        m_op = t.req.op;
82        m_round = t.req.round;
83    
84        fpu_cov.sample();
85    
86        coverage = fpu_cov.get_inst_coverage();
87        if(coverage >= coverage_threshold) begin
88          done = 1;
89        end
90    
91      endfunction

In addition to keeping count of coverage information, the coverage collector 
allows the testbench to be shut down when the coverage threshold is reached. 
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It does this in conjunction with the top-level environment. The top-level 
environment calls global_stop_request() as the first (and only) statement 
in its run() task. This causes stop() to be called in all components that have 
enable_stop_interrupt set to 1, including our coverage collector. When all 
stop() tasks return, then the simulation shuts down. Our coverage collector 
does not return from the stop() task until the done bit is set, indicating that 
full coverage has been reached.

96      task stop(string ph_name);
97        wait (done == 1);
98        ovm_report_info(“stop”, “allowing stop”);
99      endtask

Notice that we do not need any explicit communication path between the 
coverage collector and the test. The stop_request mechanism in OVM 
automatically handles the proper notification. The test will not complete until 
all components in the testbench (that have their enable_stop_interrupt bit 
set) return from their stop() methods, or a timeout has been reached.

So, just because the stop() task in this component is unblocked, it doesn’t 
mean the simulation will immediately terminate. It only means that from the 
perspective of this coverage collector, it’s okay for the simulation to terminate. 
It could be that there are other components whose stop() task still blocks for 
one reason or another. Only when all the stop() tasks return will shutdown 
begin.

7.3 FPU Agent

As we refine the transaction-level model of the FPU to RTL, it becomes 
necessary to ensure that the interface protocol is exercised fully and correctly. 
To illustrate this verification task, we use an RTL version of the FPU model 
written in VHDL.1 The interface to the FPU is straightforward, which makes 
it a good candidate for the examples. Figure 7-2 shows the pinout for the FPU 
block. It has two 32-bit input buses for A and B operands and a 32-bit bus for 
the output result. A 2-bit input bus defines the rounding mode, and a 3-bit 
input bus defines the operation to be performed. Eight output pins signal 
exceptions, one per pin

1. The FPU in our examples is the FPU100 design from opencores.org. For complete 
details see http://www.opencores.org/projects.cgi/web/fpu100/overview.
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. 

Figure 7-2  Pinout for FPU

The 32-bit A and B operands and the 32-bit result are floating point values 
and are represented using the IEEE 754 standard for binary representation of 
floating point values.

The tables below summarize the function of the FPU. 

The FPU is operated by the start pin. A calculation begins on the next rising 
clock edge when the start pin is asserted. The FPU asserts the ready pin 
when the calculation is complete. The device is pipelined with a depth of 1 so 
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when the ready pin asserts, it indicates that the result of the previous 
calculation is available on the outputs.

To use the FPU in testbenches it’s convenient to treat it like a protocol—to 
create a driver, monitor, and so forth, and encapsulate them in an agent. 
While the interface to the FPU is not a general-purpose protocol like our 
HFPB protocol or others such as USB, PCI, and so forth, thinking of it in those 
terms enables us to create reusable components for building testbenches for 
the FPU or devices that use the FPU.

The organization of the FPU agent is shown in Figure 7-3 below. It’s 
organized much like the HFPB agent. It has masters and drivers, which 
convert transactions into pin-level activity. It also has a pin-level bus, monitor, 
talker, and coverage collector. One important difference is that it doesn’t have 
slaves, so you can’t really use the agent as a standalone bus model. Since the 
FPU interface is a protocol for accessing a specific device and not a bus or a 
communication protocol, there is no problem. 

Figure 7-3  FPU Agent
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As with our HFPB Agent, the FPU Agent includes a protocol-specific 
coverage collector. The monitor detects request and response transactions on 
the pin-level interface and assembles them into an fpu_pair transaction, 
which includes both the request and response transactions embedded in it. 
One way to customize the agent is to configure it via the factory to instantiate 
different coverage collectors, depending on what you are trying to 
accomplish in your test.

The FPU agent has three ways to drive transactions on the bus: a master, a 
transport master, and a sequencer-driver combination. The master and 
transport master use transaction objects derived from ovm_transaction. The 
sequencer-driver uses transaction objects derived from ovm_sequence_item. 
The difference is that sequence items have some extra machinery that enables 
them to be transported through a sequencer to a driver. Besides being derived 
from different base classes, the contents of the sequence items and the 
transactions are identical. Chapter 8 discusses sequences and sequence items 
more thoroughly. These three components for driving transactions to the FPU 
are mutually exclusive. Good coding practices dictate that the configuration 
interface for the FPU agent ensures that no more than one form is 
instantiated. 

7.4 Scoreboards

The term scoreboard is a generic term for a wide range of component types 
whose function is to answer does-it-work questions. The essential 
characteristic of a scoreboard is that it collects data about the operation of the 
DUT as the simulation proceeds and compares it with a reference of some sort 
to determine if the DUT is functioning correctly. A scoreboard can be as 
simple as a trigger that recognizes when a flag is raised or a truth table, as in 
the simple testbench in Section 1.2.2. Or it can be as complex as a complete 
reference model of a complete system design.

For the FPU design, we embed a scoreboard inside a reference model. The 
The reference for the FPU contains the transaction-level implementation of 
the FPU and a scoreboard to compare the data generated by reference with 
the results from the RTL DUT. Figure 7-4 shows the reference, along with an 
example design that uses it.
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Figure 7-4  Complete FPU Testbench

In this application, the reference model serves as an analysis component. That 
is, the agent sends request-response transaction pairs (fpu_pair) out its 
analysis_port to be used for additional analysis beyond the protocol-
specific coverage calculated in the agent. Since an analysis_port is 
unidirectional but the TLM FPU model is bidirectional, we create an adapter 
component that interfaces between the two. 

The FPU adapter includes an analysis_fifo (see Section 5.4) to hold the 
fpu_pair transactions coming from the agent. The run task of the adapter 
gets the transaction pair from the FIFO, extracts the request transaction, and 
sends it to the TLM reference model, which returns a response transaction. 
The adapter writes this reference response, along with the request, as a new 
pair to its analysis port.

46      task run;
47    
48        fpu_pair in_pair;
49        fpu_pair out_pair;
50        fpu_response rsp;
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51                          
52        forever begin
53          pair_fifo.get(in_pair);
54          transport_port.transport(in_pair.req, rsp);
55          out_pair = new(in_pair.req, rsp);
56          pair_ap.write(out_pair);
57        end
58      endtask

The scoreboard has two analysis exports, one connected to the agent and the 
other connected to the adapter. Its run task continually compares the 
reference response to the original response from the agent and reports any 
errors.

7.5 Different Tests

Once the basic testbench topology has been defined, OVM lets you define a 
test class that instantiates the testbench and optionally modifies it via the 
factory or configuration mechanisms. Since tests themselves are classes, it is 
easy to create additional tests as straightforward extensions of a base test. The 
test to be run can simply be specified on the command line via the 
OVM_TESTNAME plusarg or as a string argument to the run_test() task.

Since a test always instantiates a testbench, the instantiation is typically done 
in the base test.

110   module top;
111   
112     parameter int DATA_SIZE = 8;
113     parameter int ADDR_SIZE = 10;
114   
118     virtual class test_base extends ovm_component;
119   
120       typedef env #(top.DATA_SIZE, top.ADDR_SIZE) env_t;
121       env_t e;
122   
123       function new(string name, ovm_component parent);
124         super.new(name, parent);
125       endfunction
126   
127       function void build();
128         e = env_t::type_id::create(“env”,this);
129       endfunction
130   
131     endclass
file: 07_complete_testbenches/03_tests/top.sv



162 Different Tests
Notice that the test is declared inside the top-level module, top. The testbench 
and components are best declared inside packages to facilitate reuse, but tests 
themselves typically rely on OOP inheritance for reuse. Having all the tests 
compiled in the top-level module provides the flexibility to choose which test 
to execute at run time, rather than requiring recompilation to switch between 
tests. It also allows the test to use parameter values specified in the module.

Default configuration parameters and other information can be defined in the 
base test or in the testbench. In this example, the test simply instantiates the 
testbench, which specifies default configuration for its children in the 
build() method:

73      function void build();
74    
75        set_config_int(“fpu_agent”, “has_transport_master”, 
1);
76        set_config_int(“fpu_agent”, “has_monitor”, 1);
77        set_config_int(“fpu_agent”, “has_talker”, 1);
78        set_config_int(“fpu_agent”, “has_coverage”, 1);
79    
80        agent     = new(“fpu_agent”,  this);
81        reference = new(“reference”,  this);
82        c         = calc::type_id::create(“calc”, this);
83    
84      endfunction
file: 07_complete_testbenches/03_tests/top.sv

Since configuration is hierarchical in OVM, a test may override a default 
configuration in the testbench, or it may set additional configuration. 
Typically, a test also sets factory overrides to swap new components into the 
environment to customize the behavior. In this example, the testbench 
configures the FPU agent to instantiate a coverage collector, but it is up to the 
test to specify which coverage collector to use. This is done in the build()
method.

135     class test_one extends test_base;
136   
137       ‘ovm_component_utils(test_one);
138   
139       function new(string name, ovm_component parent);
140         super.new(name, parent);
141       endfunction
142   
143       function void build();
144         super.build();
145         fpu_coverage::type_id::set_type_override(
146                              fpu_ctrl_coverage::get_type());
147       endfunction
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148   
149     endclass
file: 07_complete_testbenches/03_tests/top.sv

Notice the calls to super.new() and super.build(). These ensure that the 
base test’s underlying functionality is properly called, and they are required 
for every extension of base_test. The factory override specification tells the 
agent to instantiate the fpu_ctrl_coverage collector in place of its default 
fpu_coverage component. As shown in Section 7.2 above, this coverage 
collector ensures that all FPU operations are performed.

The same testbench may be used by a different test whose intent is to verify a 
different aspect of the FPU functionality. In this case, we may wish to use a 
different stimulus generator and check that interesting combinations of data 
values on the two operands are generated.

153     class test_two extends test_base;
154   
155       ‘ovm_component_utils(test_two);
156   
157       function new(string name, ovm_component parent);
158         super.new(name, parent);
159       endfunction
160   
161       function void build();
162         super.build();
163         fpu_coverage::type_id::set_type_override(
164                              fpu_data_coverage::get_type());
165         calc::type_id::set_type_override(calc2::get_type());
166       endfunction
167   
168     endclass
file: 07_complete_testbenches/03_tests/top.sv

Notice that test_two is also an extension of test_base, but in this case, it 
instantiates both the new fpu_data_coverage collector and a new stimulus 
generator, calc2. 

The test is actually executed via the run_test() task in the top-level module’s 
initial block. This task uses the factory to create an instance of the test class 
specified either as a string argument or via the OVM_TESTNAME plusarg on the 
simulator command line. For this reason, all runnable tests must be registered 
with the factory. Once created by the factory, the test is run through its phases 
as any other OVM component, instantiating the testbench and executing the 
test. Additional tests may be added either as extensions to the base test or as 
further extensions to existing tests.



164 Summary
7.6 Summary

The OVM provides ways to specify analysis components to answer the does-
it-work and are-we-done questions. Coverage collectors and scoreboards are 
created specifically to answer these questions by taking data produced by 
analysis ports and turning the data into useful information that guides the 
verification process. Protocol-specific questions may be answered by 
instantiating coverage collectors inside an agent, while additional 
application-specific functional questions may be answered by analysis 
components in either the testbench or the test.

Providing this clear separation between the structural testbench and the test 
facilitates reuse by allowing tests to modify the structure or behavior of 
components in the testbench. Having tests extend from each other or from a 
common base test greatly simplifies the task of creating additional 
incremental testcases to exercise different functionality. When sequences are 
added to the mix, as we shall see in the next chapter, the OVM provides ways 
for you to develop a vast array of tests without a lot of coding, making you 
more productive.
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Sequences
To answer the are-we-done and does-it-work questions, we have to first 
stimulate the design in interesting ways. The ability of the testbench to 
exercise all the meaningful functions and corner cases of a design is 
dependent on the quality of the stimulus applied to it. Good quality stimulus 
is complete, yet spare. It causes the design to visit as many unique states as 
possible without undue repetition. Elements that generate good stimulus can 
be complex to build, so it is important to have a means for building stimulus 
generation elements in a modular, reusable fashion.

OVM provides a facility called sequences for building reusable stimulus 
generators. Sequences are objects that produce streams of sequence items for 
stimulating a driver. A sequence item is a transaction with some extra 
bookkeeping members. 

8.1 Sequence Basics

A sequence bears a striking resemblance to a functor, although it’s not exactly 
the same thing. In OOP lingo, a functor is an object that serves as a function 
replacement. SystemVerilog, which does not support operator overloading, 
does not allow you to create true functors; however, sequences come close. A 
sequence is an object, and like most OVM objects, it is derived from 
ovm_object. The essential feature of the ovm_sequence_base base class is 
that it contains a virtual task called body(). Executing a sequence means 
creating an instance of it and invoking its body task. The body() task is the 
reason for a sequence to exist.

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_8, 
© Mentor Graphics Corporation, 2009
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Sequences are not components; therefore, they are not part of the component 
hierarchy. Sequences are associated with a sequencer, an object that is a 
component, and therefore, part of the component hierarchy. The sequencer 
provides a place to attach sequences and funnels sequence items to a driver. 
The sequencer also arbitrates among multiple sequences operating in parallel. 

Figure 8-1  Relationship between Sequences, Sequencer, and Driver

The driver and sequencer talk to each other through a special TLM port called 
a seq_item_pull_port. In this, the most common use model, the driver pulls
sequence items from the sequencer1. This port has an interface specifically 
designed for communication between a driver and a sequencer. The 
sequences associated with a particular sequencer also have a special API for 
communication. The API contains methods for requesting arbitration and 
granting access as well as sending and receiving sequence items. We’ll look at 
these interfaces in more detail later in this chapter.

8.2 A Sequence Example

The most basic sequence configuration consists of three components: a driver, 
a sequencer, and a sequence. There are two APIs in play here: the sequence-
sequencer API and the sequencer-driver API. To illustrate how sequences are 
constructed and initiated, let’s consider the simple design in Figure 8-2.

1. An alternative use model has a push sequencer, which uses an 
ovm_blocking_put_port to put sequence items directly to the driver.
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Figure 8-2  Simple Sequence Configuration

Because the sequencer and driver are components, they are instantiated and 
connected in the top-level environment in the usual way.

129     function void connect();
130       drv.seq_item_port.connect(sqr.seq_item_export);
131     endfunction
file: 08_sequences/01_simple/top.sv

The sequence is instantiated when it is needed, in this case in the run() task. 
The function start() serves to both associate a sequence with a sequencer 
and initiate the execution of the sequence.

133     task run();
134       seq = new();
135       seq.start(sqr);
136       global_stop_request();
137     endtask
file: 08_sequences/01_simple/top.sv

start() is blocking; it returns only when the sequence completes. Now let’s 
look at the construction of the driver and the sequence. The sequence API 
provides a means for requesting service, sending requests, and, as we will see 
later, retrieving responses. Here is the sequence in our simple example:

92    class my_sequence extends ovm_sequence #(trans);
93    
94      task body();
95    
96        trans t;
97        
98        for(int unsigned i = 0; i < 10; i++) begin
99          wait_for_grant();
100         t = new();
101         assert(t.randomize());
102         send_request(t);
103       end

DRIVERSEQUENCERSEQ
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104   
105     endtask
106   
107   endclass
file: 08_sequences/01_simple/top.sv

This sequence is derived from ovm_sequence and parameterized with the 
type of request transaction it will send to the driver. The meat of the sequence 
is in the body() task. This is where the work of the sequence is done. In this 
example, the main structure in body() is a loop that sends 10 transactions. To 
send a transaction, it first calls wait_for_grant() to request service. 
wait_for_grant() blocks until the sequence is ready to run. The sequencer 
arbitrates among multiple parallel sequences, and a call to 
wait_for_grant() puts an entry in the sequencer’s arbitration queue and 
waits until the sequencer grants access.

Once access is granted, the sequence can then create the request sequence 
item and populate it with data. In our case, we simply randomize the item. 
send_request(), as the name implies, sends the request through the 
sequencer to the driver. send_request() is a nonblocking function, and it 
returns in the same delta cycle in which it is called.

To communicate with the sequencer, the driver has an 
ovm_seq_item_pull_port. This port is a special port, not one of the standard 
ports. It is constructed in the same manner as a standard TLM port, but it has 
a custom interface designed for communicating with a sequencer. The table 
below identifies the essential methods in the seq_item_pull interface. 

task get_next_item(output T1 t) Blocking function that retrieves 
the next request.

task try_next_item(output T1 t) Pseudo-nonblocking function 
that retrieves the next request. 
Since it has to synchronize with 
the sequence process, it will con-
sume at least one delta cycle.

function void item_done(T2 t = 
null)

Signifies to the sequencer that the 
item is complete.

function bit has_do_available() Asks the sequencer if there is a 
sequence with a request pending.

function void put_response( T2 t) Sends a response back to the 
sequence.
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Unlike a sequence, a driver is a component, and it has the usual constructor 
and phase callbacks. Since this is a simple example to illustrate the mechanics 
of sequences, the driver doesn’t really drive signals on a bus. However, the 
the essential structure is the same as a real driver. The run() task is a forever 
loop that continually retrieves requests and simply processes them. In this 
case it just prints them.

59    class driver extends ovm_component;
60    
61      ovm_seq_item_pull_port #(trans) seq_item_port;
62    
63      function new(string name, ovm_component parent);
64        super.new(name, parent);
65      endfunction
66    
67      function void build();
68        seq_item_port = new(“seq_item_port”, this);
69      endfunction
70    
71      task run();
72        trans t;
73    
74        forever begin
75          seq_item_port.get(t);
76          ovm_report_info(“get request”, t.do_sprint());
77          #1;
78        end
79    
80      endtask
81    
82    endclass
file: 08_sequences/01_simple/top.sv

task get(output T1 t) Retrieves the next request. This is 
equivalent to get_next_item (or 
try_next_item) followed by 
item_done().

task peek(output T1 t) Retrieves the next request with-
out consuming it.

task put(input T2 t) An alias for put_response. This 
function is in the interface to 
maintain consistency with the 
standard TLM interface functions.
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There are several features of a driver intended to be driven by sequences that 
are different from a driver driven by a typical transaction-level model, as 
described in Section 5.1. First, the ingress port for transactions is a 
seq_item_pull_port. Second, the request and response types must be 
derived from ovm_sequence_item. Sequence items are much like transactions 
(that is, objects derived from ovm_transaction) except the 
ovm_sequence_item base class contains some additional members for use in 
routing the item through the sequencer to the driver and back.

Why must we use a special interface for connecting a driver to a sequencer 
rather than just use the standard TLM interfaces? The reason is that the 
seq_item_pull interface is designed to synchronize between two 
processes—the sequence process and the driver process. 

Figure 8-3  Processes Involved in Sequence Communication

Actually, there are three processes involved. Each of the objects involved in 
the communication—the sequence, the sequencer, and the driver—has a 
process, and those processes must all be synchronized in order for a sequence 
item to be transferred from the sequence to the driver. The sequence process 
is responsible for generating a sequence item. The sequencer process handles 
the arbitration of multiple parallel sequences, and the driver process is 
responsible for managing the bus.

Because there are multiple processes involved in moving a sequence item 
from the sequence to the driver, there is no true nonblocking method in the 
seq_item_pull interface. In the get example discussed in Section 3.4.2, both 
the producer and consumer are in the same process. In Section 3.5, we 
inserted a FIFO channel between the producer and consumer. The channel 
enables the producer and consumer to each have separate processes, and it 
synchronizes the two processes. That synchronization will consume at least 
one delta cycle. This is true even if both the producer and consumer use 
nonblocking methods to put things into the FIFO and get them out. In a 
practical sense, the sequencer operates as a channel between the sequence and 
the driver. Thus, the get(), get_next_item(), and try_next_item()
methods in the seq_item_pull interface will always consume at least one 
delta cycle.
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8.3 Anatomy of a Sequence

A sequence is conceptually a very simple object whose primary role is for its 
body task to generate a stream of sequence items, as we saw in the last 
section. However, it has a lot of parts that enable it to be used in a number of 
different ways. In this section we will discuss the various parts of the 
sequence object and sketch out its functionality beyond just execution of the 
body() task. The UML below shows how sequences and sequencers are 
organized.

Figure 8-4  UML for Sequences and Sequencers

To review: sequencers are components; that is, ovm_sequencer is derived from 
ovm_component. The sequencer is parameterized with the request and 
response type of the items it will process.

Sequences, on the other hand, are not components. ovm_sequence is derived 
from ovm_sequence_item, which is in turn derived from ovm_transaction, 
which reflects the transient nature of sequences. Sequence items know which 
sequencer they are associated with via a special reference called 
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m_sequencer. This enables sequence items and sequences to access the 
sequencer and use services it makes available. 

A sequence may also have a reference called p_sequencer, which is also a 
reference to the sequencer. The difference between m_sequencer and 
p_sequencer is that m_sequencer is a reference to ovm_sequencer_base, the 
sequencer’s base class, and p_sequencer is a reference to 
ovm_sequencer#(REQ,RSP), the derived parameterized sequencer class.   The 
derived sequencer may have additional resources you add in. 

The m_sequencer reference is set automatically when you call start(). 
Because the type of the p_sequencer is not known a priori, you must provide 
a declaration of p_sequencer and implement a function to set its value. In 
ovm_sequence_item, the base class for ovm_sequence, is the virtual function 
m_set_p_sequencer(). In your derived sequence, you will need to define the 
specific type of p_sequencer and provide an implementation of 
m_set_p_sequencer().

my_sqr_type p_sequencer;

function void m_set_p_sequencer();
super.m_set_p_sequencer();
assert($cast(p_sequencer, m_sequencer));

endfunction

As a convenience, the macro ‘ovm_declare_p_sequencer will define the 
type for you. You simply invoke it at the top of your sequence. Its argument is 
the type of the p_sequencer.

A sequence can run other sequences. In the example above, we showed the 
start() task being called from the run task of a component. The start()
task can also be called from the body() task of another sequence. start()
tasks can also be forked to allow multiple sequences to run in parallel. (We’ll 
look at the details of how to manage parallelism amongst sequences in 
Section 8.6.) Running sequences in parallel and allowing them to call other 
sequences allows you to create arbitrary hierarchies of sequences. The 
sequence hierarchy, rooted at the sequencer, is not unlike the component 
hierarchy. Each sequence in the hierarchy has a location relative to the 
sequencer, and thus a unique path name. The function 
get_sequence_path() in ovm_sequence_item returns a string with the full 
path name of a sequence.

Since sequences are not components, and thus not anchored into the 
component hierarchy, they can be dynamic. Each sequence exists only as long 
as the body task continues to execute. When it terminates, so does the 
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sequence. This is like the functor behavior described earlier. A functor comes 
into existence, executes its function, and then goes away to be garbage 
collected later. Of course, a sequence can be effectively static in that it comes 
into existence when the test starts, and goes away when the test concludes. 
The lifetime of a sequence is entirely dependent on its function.

When a sequence is started, pre_body() is called first, followed by body(), 
and then post_body(). pre_body() and post_body() are virtual tasks with 
default empty implementations. You can implement them as you please. 
Typically, pre_body() is used for one-time initialization and post_body() is 
for final clean-up.

8.4 Another Sequence API

In Section 8.2, we discussed how to use wait_for_grant() and 
send_request() to send sequence items from a sequence to a driver. While 
this is a perfectly valid way to transmit sequences, it’s not entirely general. In 
this section we will discuss an alternate, more generalized way of sending 
sequences. The new API consists of three methods, create_item(), 
start_item(), and finish_item(). 

This alternate API is illustrated in an example that is a modified version of an 
earlier one shown in Section 7.4. Previously, we showed how to send 
transactions to a driver using a fixed stimulus generator: the random 
calculator. Here, we replace the fixed stimulus generator with a sequence. 

Figure 8-5  FPU Testbench with a Randomized Sequence
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To make this replacement, the first thing we have to do is reconfigure the FPU 
agent to have a sequencer and not a master.

76        set_config_int(“fpu_agent”, “has_monitor”, 1);
77        set_config_int(“fpu_agent”, “has_sequencer”, 1);
78        set_config_int(“fpu_agent”, “has_talker”, 1);
79        set_config_int(“fpu_agent”, “has_coverage”, 1);
80    
81        
fpu_coverage::type_id::set_type_override(fpu_ctrl_coverage::get
_type());
file: 08_sequences/08_calc/top.sv

The has_sequencer flag instructs the agent to instantiate a sequencer. Then, 
in the run() task we use start() to initiate execution of the sequence.

98      task run();
99    
100       fpu_seq_rand seq;
101   
102       ovm_report_info(“env”, “start”);
103   
104       global_stop_request();
105       seq = new();
106       seq.start(agent.sequencer);
107   
108       ovm_report_info(“env”, “finish”);
109     endtask
file: 08_sequences/08_calc/top.sv

The sequence uses the alternate API to send a series of sequence items to the 
driver through the sequence. As you can see in the body() task below, we first 
create a new item, and then we communicate to the sequencer that we want to 
send an item to the driver by calling start_item(). To create an item, we 
pass its type handle to create_item(), which then uses the factory to 
instantiate a new instance. Embedded in start_item() is a call to 
wait_for_grant().

33      task body();
34    
35        ieeeFloat f;
36    
37        f = new();
38    
39        for(int unsigned i = 0; i < 10000; i++) begin
40          assert($cast(req,
41                       create_item(fpu_request_item::get_type(),
42                       m_sequencer, “req”)));



Response Routing 175
43          start_item(req);
44          assert(req.randomize());
45          finish_item(req);
46          get_response(rsp);
47        end
48    
49      endtask

finish_item() calls send_request() and wait_for_item_done(). The 
contents of the sequence item are populated between the calls to 
start_item() and finish_item(), either through directed or randomized 
means. In the example above, we use both.

Why use this API instead of the previous one? First, recall that ovm_sequence
is derived from ovm_sequence_item—a sequence is a sequence item. Also 
recall that a sequence can run another sequence. The start_item() API will 
look to see if the object passed in is a sequence item or a sequence. If it’s a 
sequence, it will initiate execution on m_sequencer. If it’s a sequence item, it 
will send it to the driver. So, start_item() provides a polymorphic way to 
initiate execution of sequences and sequence items.

8.5 Response Routing

Many bus protocols are bidirectional. In those protocols, masters send 
requests and receive responses. Slaves do the opposite. They receive requests 
and send responses. Drivers for bidirectional protocols have to return 
responses to a sequence. In the case where there are multiple sequences 
operating in parallel, there is the intuitive notion that each response sent back 
by the driver must be returned to the sequence that originated the request. 
The sequencer has some machinery for doing exactly that. 

DRIVERSEQUENCER

SEQ

SEQ

SEQ

Response queues
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Figure 8-6  Sequences with Response Queues

Each sequence contains a response queue. The put_response() method, 
which is called by the driver, puts a response object in the queue for the 
sequence from which the request originated. The get_response() method in 
the sequence pulls the response object from its queue. The sequencer knows 
in which queue to put the response because the response item contains a 
sequence ID. The response item knows the sequence ID because the driver 
put the sequence ID into the response item. Unfortunately, this does not 
happen automatically. You have to make a call to move the sequence ID from 
the request into the response. Here’s the body of a simple bidirectional driver:

137     task run();
138       request_item req;
139       response_item rsp;
140   
141       forever begin
142         seq_item_port.get(req);
143         rsp = new();
144         rsp.copy_req(req);
145         rsp.set_id_info(req);
146         #1;
147         seq_item_port.put_response(rsp);
148       end
file: 08_sequences/02_bidir/top.sv

The call to set_id_info() copies sequence identification information from 
the request object into the response object and enables the put_response()
method to know in which queue to put the response object. 

The main code in the sequence is much like the code in the example earlier in 
this chapter. The exception is the get_response() call at the end of the loop.

169       for(int unsigned i = 0; i < 10; i++) begin
170         
$cast(req,create_item(request_item::get_type(),m_sequencer,”req
”));
171         start_item(req);
172         assert(req.randomize());
173         m_sequencer.ovm_report_info(“send”,
174           req.do_sprint());
175         finish_item(req);
176         get_response(rsp);
177         m_sequencer.ovm_report_info(“retrieve”,
178           rsp.do_sprint());
179       end
file: 08_sequences/02_bidir/top.sv
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The flow of control does a round trip from the sequence to the driver and 
back again. The activity is orchestrated by the sequencer. send_request()
initiates data transfers from the sequence to the driver; put_response()
transfers data and control back to the sequence. send_request() is 
nonblocking. Once it’s called, data is sent through the sequence to the driver 
and the get (or get_next_item) task is allowed to return. get_response() is 
blocking, so it will wait until a response is available before it returns. This
flow is illustrated in the diagram below: 

Figure 8-7  Flow of Control between Sequence and Driver

This lock-step relationship between sequences and drivers is intended for 
protocols where the request and response are synchronized, and there is one 
response for each request. OVM also provides an alternate control and data 
flow for situations where that might not be the case. Some protocols return 
responses for a group of requests instead of one response for each request. 
Some protocols return responses in a different order than the request stream. 
To handle these situations, the OVM sequence provides a response handler 
facility. Instead of calling get_response() to retrieve a response, you use a 
response handler. The response handler is a function that is invoked whenever 
a response from the driver becomes available.

Here’s what the sequence looks like after it has been modified to use a 
response handler.

147   class my_sequence
148     extends ovm_sequence #(request_item, response_item);
149   
150     int unsigned expected_responses;
151   
152     function new(string name);
153       super.new(name);
154       expected_responses = 0;
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155     endfunction
156   
157     task pre_body();
158       use_response_handler(1);
159     endtask
160   
161     task body();
162   
163       request_item req;
164       response_item rsp;
165   
166       for(int unsigned i = 0; i < 10; i++) begin
167         $cast(req, create_item(request_item::get_type(),
168                                m_sequencer, “request”));
169         start_item(req);
170         assert(req.randomize());
171         req.seq_name = get_name();
172         m_sequencer.ovm_report_info(“send”, 
req.do_sprint());
173         expected_responses++;
174         finish_item(req);
175       end
176   
177       wait (expected_responses == 0);
178   
179     endtask
180   
181     function void response_handler(ovm_sequence_item 
response);
182       response_item rsp;
183       assert($cast(rsp, response));
184       m_sequencer.ovm_report_info(“retrieve”,
185                                   rsp.do_sprint());
186       expected_responses--;
187     endfunction
188   
189   endclass
file: 08_sequences/04_handler/top.sv

The first thing to notice is that the get_response call has been removed from 
the main body loop. In its place, we’ve added a function called 
response_handler. The response handler function is called by the sequencer 
when the driver calls put_response() on its seq_item_port. The prototype 
of ovm_sequence_base::response_handler() has ovm_sequence_item as 
its argument. So, we must also use ovm_sequence_item in our 
implementation and cast the argument to the response type. To let the 
sequencer know that it should call the response handler when the driver 
sends back a response, we turn it on using the call to 
use_response_handler() in the pre_body() task.
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The control flow is slightly different when we use a response handler. The 
response handler operates asynchronously from the sequence body. Since 
send_request() is nonblocking, the response handler will be invoked when 
the driver returns a response and the sequence is blocked. In our case, 
wait_for_grant() is the blocking call that allows the response handler to be 
invoked.

Figure 8-8  Flow of Control with a Response Handler

By using a response handler instead of calling get_response(), we have 
decoupled the collection of responses from the generation of requests. We can 
use the response handler to manage out-of-order responses or protocols that 
do not generate one response for every request.

8.6 Sequences in Parallel

Sequences can operate in parallel. Multiple sequences associated with the 
same sequencer can operate together to send a stream of sequence items into 
a driver. Running sequences in parallel is simply a matter of using fork to 
execute each sequence in separate, parallel processes.

147     task run();
148   
149       seq1 = new(“seq1”);
150       seq2 = new(“seq2”);
151       seq3 = new(“seq3”);
152   
153       fork
154         seq1.start(sqr);
155         seq2.start(sqr);
156         seq3.start(sqr);
157       join
158   
159       global_stop_request();
160     endtask
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file: 08_sequences/03_parallel/top.sv

In the run task above, three sequences are executed in parallel using the 
SystemVerilog fork-join construct. The start() method initiates execution 
of the sequence and associates it with a sequencer identified by the argument.

The sequencer arbitrates among all the executing sequences associated with 
it. When a sequence calls the blocking task wait_for_grant(), an entry is 
made in the sequencer’s arbitration queue. The sequence chooses a sequence 
from the arbitration queue and allows it to execute by letting the task return 
in the selected sequence.

By default, the sequencer arbitrates the sequences in FIFO order. However, 
you have a lot of control over the specific order of parallel-sequence 
execution. The sequencer supports a variety of arbitration algorithms. They 
are summarized in the table below. 

To change the arbitration mode, call set_arbitration() on the sequence 
and specify the desired arbitration algorithm. A sequence specifies its weight 
when it requests arbitration by calling wait_for_grant(), which accepts an 
optional weight argument.

162       m_sequencer.set_arbitration(SEQ_ARB_WEIGHTED);
163       fork
164         A.start(m_sequencer, this, 100);
165         B.start(m_sequencer, this, 20);
166         C.start(m_sequencer, this, 10);
167       join

SEQ_ARB_FIFO FIFO ordering. This is the default arbitration 
mode.

SEQ_ARB_WEIGHTED Randomly choose the next sequence. Use 
weights specified by wait_for_grant() calls 
to bias the selection.

SEQ_ARB_RANDOM Randomly choose the next sequence.

SEQ_ARB_STRICT_FIFO All requests at the highest priority are granted 
in FIFO order.

SEQ_ARB_STRICT_RANDOM All requests at the highest priority are granted 
in random order.

SEQ_ARB_USER User supplies the arbitration algorithm.
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file: 08_sequences/05_arb/top.sv

The code fragment above uses the m_sequencer pointer in a sequence to call 
set_arbitration() and tell it which arbitration algorithm to use. Three 
sequences are spawned to run in parallel, each with a different weight. The 
weights are relative. The total weight for these three sequences is 100 + 20 + 10 
= 130. The SEQ_ARB_WEIGHTED algorithm uses these weights to select the next 
sequence to run. Given these weights, sequence A will run 100/130 or 77 
percent of the time, sequence B will run 20/130 or 15 percent of the time, and 
sequence C will run 10/130 or 8 percent of the time.

A sequence can specify that it doesn’t want to give up access to the driver 
after only a single call to send_request(). It can lock the sequencer so that it 
will run continuously. A sequence can call lock() to retain ownership of the 
sequence and driver. lock() is a blocking call, and it will return when the 
request is granted. The sequence holds the lock until it calls unlock(). A 
slight variation of lock() and unlock() is grab() and ungrab(). These two 
functions work in the same way as lock() and unlock()—grab() is a 
blocking call that returns when the request is granted, and the lock is held 
until a corresponding call to ungrab() is made. The difference between the 
two is when the request is granted. Locks are arbitrated; they are put in the 
request queue along with other requests. When the lock comes to the head of 
the queue, then the sequencer grants the lock. Grabs, on the other hand, are 
not arbitrated. They jump right to the head of the queue. No sequence can 
have a higher priority than a grab.

By dividing the stimulus generation into small, modular sequences and 
executing them in parallel, you can build complex stimulus. Rather than 
building a single monolithic stimulus generator, you can more accurately 
mimic the environment that the DUT will run in.

8.7 Constructing APIs with Sequences

The essence of reuse, as we discussed previously, is to build components with 
well-defined interfaces. Because the interface is well defined, clients of the 
component know exactly what services the component provides and how to 
access those services. Dependencies are carefully contained. You can use the 
sequences facility to construct such interfaces, or APIs, for your test 
environment. You can create a library of sequences that enable access to the 
DUT or bus, and you can layer other libraries of sequences on top of that to 
build higher-level functionality.
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We mentioned earlier that sequences had a passing similarity to functors. You 
can use that fact to construct APIs from a set of sequences. Consider that an 
API is a collection of methods. A sequence is an object whose role is to 
execute a single method, specifically its body() task. So, a set of sequences is 
essentially a set of methods. The protocol for initiating a sequence is a bit 
more verbose than just calling a task or function, but the idea is the same. The 
reasons for choosing a sequence-based API over a fixed component are based 
on all the sequence functionality we’ve discussed so far—sequences have 
facilities built in for managing concurrency; their lifetime is controlled by the 
nature of their functionality, not the containing component; they have a 
modular nature; and so forth. 

As an example, we can construct a test API for the HFPB protocol by 
combining three sequences, one that performs a read operation, one that 
performs a write operation, and one that performs an idle. These are all the 
possible things that you can do with the HFPB protocol.

Figure 8-9  Using Sequences to Construct a Test API for HFPB

With those sequences in place, we can then layer an operand API that we will 
use for the FPU. An operand is one or more words. The API breaks operands 
into individual words that can be transmitted over an HFPB bus. On top of 
the operand API, we can build tests.

The design in Figure 8-9 uses a simple transaction-level memory to illustrate 
the construction of a sequence-based API and how it is formed into layers. In 
this example, we have a test sequence that randomly reads and writes 
operands. The operand reads and writes are implemented by the HFPB layer 
to form bus reads and writes. Each layer only needs to know about the layer 
below it. The top-level environment only needs to have knowledge of the test 
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sequence. The test sequence only needs to know about the operand layer, and 
so forth. Each layer contains declarations and invocations of the sequences 
and the next, lower layer.

To start things off, the run() task in the top-level environment simply 
initiates the randomizing sequence, hfpb_seq_rand_rw.

77      task run();
78        hfpb_seq_rand_rw #(DATA_SIZE, ADDR_SIZE) rand_seq;
79        rand_seq = new(“rand_rw”);
80        rand_seq.start(sqr);
81        global_stop_request();
82      endtask
file: 08_sequences/06_api/top.sv

The body() task of the hfpb_seq_rand_rw starts with the declarations of the 
subordinate sequences it uses during its execution.

57      task body();
58     
59        typedef hfpb_seq_read_operand
60          #(DATA_SIZE, ADDR_SIZE) read_seq_t;
61        typedef hfpb_seq_write_operand
62          #(DATA_SIZE, ADDR_SIZE) write_seq_t;
63    
64        read_seq_t read_seq;
65        write_seq_t write_seq;

Note that the HFPB sequences are parameterized in the same fashion as the 
other HFPB components. The DATA_SIZE and ADDR_SIZE parameters are 
passed on to the operand sequences, which in turn pass them on to the read/
write sequences, and then to the sequence items generated. The types of the 
parameterized sequence items then match the driver types.

The main part of the body() task uses the declared sequences to execute 
randomized reads and writes of operands.

68        for (int unsigned i = 0; i < iterations; i++) begin
69          case ($random & 1)
70    
71            0 : begin
72                  assert($cast(read_seq,
73                         create_item(read_seq_t::get_type(),
74                         m_sequencer, “read_operand”)));
75                  start_item(read_seq);
76                  assert(read_seq.randomize());
77                  finish_item(read_seq);
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78                end
79    
80            1 : begin
81                  assert($cast(write_seq,
82                         create_item(write_seq_t::get_type(),
83                         m_sequencer, “write_operand”)));
84                  start_item(write_seq);
85                  assert(write_seq.randomize());
86                  finish_item(write_seq);
87                end
88          endcase
89        end
90    
91      endtask

The hfpb_seq_rand_rw sequence uses the start_item()/finish_item()
API for communicating with the sequencer. Similarly, the sequences in the 
lower layers use the same API to invoke their sequences.

8.8 Summary

Sequences provide a highly modular and flexible means for building complex 
stimulus generators. They provide sophisticated means for managing 
concurrency for handling responses. Using these functor-like objects, you can 
also build test APIs that encapsulate the low-level details of stimulus 
generation.
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Block-to-System
Large-scale systems contain many elements of all different sorts—buses, 
bridges, processors, memories, special purpose slaves, and so forth. Each of 
these needs to be verified independently, and then all must be brought 
together and verified as a system. In this chapter, we explore block-level and 
system-level verification and how to share testbench components between 
them.

A single block can be any component of arbitrary complexity. It can be a 
simple adder or a complete DSP subsystem. The concept of a block is a design 
component that will become part of a larger system. When the block is 
integrated into a larger system, it’s important to not lose the work done in 
building the block-level testbench. By reusing as many testbench elements as 
possible, you save the time of having to rewrite them. Also, results from the 
block-level tests can be verified again at the system level.

9.1 Reusing Block-Level Components

We will illustrate how to reuse a block-level testbench in a system-level 
testbench using an example, as we have done throughout this book. Previous 
chapters introduced a number of components for the FPU design and HFPB 
protocol. Figure 9-1 shows a system that’s a bit more complex than we have 
seen so far, using both the HFPB protocol and the FPU.

The HFPB bus has two slaves, a transaction-level memory slave and a pin-
level FPU slave. The FPU slave is really a bridge that connects the FPU 
protocol to the HFPB protocol. The FPU agent is used in monitor-mode. 
Although not shown in the diagram, the FPU agent has a coverage collector 

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_9, 
© Mentor Graphics Corporation, 2009
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that is turned on. The FPU reference model takes transactions from the FPU 
bus and performs the same calculations as the DUT. It compares its results 
with the results from the bus to determine whether the RTL DUT performed 
the calculation correctly. Stimulus is generated entirely with layered 
sequences. The memory master and random calculator talk to the FPU-HFPB 
transport sequence, which in turn talks to the HFPB protocol layer. 

Figure 9-1  Complete System Testbench

In this design we have reused almost everything from previous block-level 
testbenches. The HFPB and FPU agents are the same as discussed previously. 
The memory slave, sequence-based test API, and reference model are also 
reused. The only thing new is the memory master and randomized calculator 
sequences. In Chapter 6, where we presented the FPU, we discussed a 
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randomized calculator and a memory master as components, not as 
sequences. 

Several things have enabled us to easily reuse components originally built for 
a block-level testbench in a complete system. The agent architecture is 
important here. It encapsulates everything about a particular protocol and 
provides a way to configure it for different situations. In the example shown 
in Figure 9-1, we have connected a transaction-level memory and a pin-level 
slave to the HFPB agent. Connecting them lets us reuse top-down transaction-
level components and bottom-up RTL components in the same design. The 
agent supports stimulus through both a traditional transaction-level master 
or through sequences (but not both at the same time). Thus we can easily 
reuse stimulus built during the verification of component blocks.

9.2 Reusing Block-Level Testbenches

Even better than reusing components from a block-level testbench is reusing 
the entire testbench. Again, the architecture of agents and sequences lets us 
do just that. The agent’s configurability lets us reuse the same component and 
make changes to suit a new application. Sequences, with their modular 
construction and support for concurrency, let us apply to the agent only the 
sequences required for a particular protocol.

We employ two essential concepts in integrating testbenches. First is to 
connect agents, possibly with a converter or adapter. The agents contain the 
communication protocol for each block, so it’s logical that connecting agents 
is equivalent to connecting block-level DUTs. Each agent encapsulates 
knowledge about only one particular protocol, so it will be necessary to have 
a converter or adapter of some sort to facilitate communication between 
different protocols.

Second is to use sequences to generate stimulus. Because sequences can run 
concurrently, it’s a simple matter of adding new sequences for the system-
level tests; you can leave the block-level stimulus in place. There’s no rewiring 
to be done. 

In our example, we connect two testbenches: an HFPB memory testbench and 
an FPU testbench. Both of these are block-level testbenches, meaning they 
verify blocks that will be connected with a larger system. They don’t make 
any assumptions about how they will be integrated into the system. Each 
testbench only knows about its own protocol and DUT.

Figure 9-2 shows the memory testbench. The memory is a transaction-level 
memory. Recall the internal topology of the HFPB agent from Figure 6-5. The 
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sequencer sends sequence items to the driver, which converts them to pin-
level protocol. The slave converts the pin protocol back to transactions, which 
are handled by the responder, which is the memory in this case.

Figure 9-2  HFPB Memory Testbench

The FPU testbench shown in Figure 9-3 also uses sequences to send sequence 
items to the agent. The sequencer in the agent converts them to the pin-level 
protocol, which drives the DUT. The FPU reference model determines 
whether the DUT produces correct results. The sequence that drives this 
testbench generates random arithmetic calculations for the FPU to perform. 

Figure 9-3  FPU Testbench

Now let’s look at a design composed of both the memory and FPU. This 
design is an expression calculator. It takes as input ASCII strings containing 
infix algebraic expressions. The design parses the expressions and generates 
an intermediate program that runs on a processor. The processor executes the 
program to generate reads and writes on the bus in order to perform 
calculations and store and retrieve results from the memory. Figure 9-4
contains a block diagram of the complete system.
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Figure 9-4  System Block Diagram

The compiler supports a mini-language for representing infix expressions, 
which includes assignments and a print statement. A typical infix expression 
might look like this:

14.2 * (19.0 + 3.2e3) / .002 

The term infix refers to the fact that the operator appears between its two 
operands. The entire language can be described with the following BNF:

stmt        := print_stmt ; | assign_stmt ;
print_stmt  := print ID
assign_stmt := ID = expr
expr        := term add_op term
add_op      := + | -
term        := factor mult_op factor
mult_op     := * | /
factor      := ( expr ) | - factor | NUM | ID

In this BNF, ID is an alphabetic identifier, and NUM is an integer or floating 
point constant. The compiler converts each ID to an address location, and 
when an identifier appears on the left-hand-side of an assignment, a new 
value is stored for it. And when it appears on the right-hand-side, its value is 
retrieved from memory. For example,

A = 92.4 * 3;

causes the result of 92.4 * 16 to be stored at the location identified 
symbolically by A. The following statement causes the value of A to be 
retrieved from memory and used in computing the expression.
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B = 2 + (A / 7.14);

The result is then stored in the location identified by B. You can also print 
values using the print statement:

print A;

-> 277.2

Assignments, variable references, and print statements turn into memory 
reads and writes; numeric computations turn into FPU computations. They 
also turn into bus reads and writes, as the FPU is a slave on the HFPB bus, 
and transporting calculations and results to and from the FPU is done via bus 
operations.

To verify this design, we must build a testbench. We already have testbenches 
for the memory block and for the FPU block. We will illustrate how to 
integrate those with the complete system. The architecture for the system 
testbench is shown in Figure 9-5. The main bus is the HFPB bus, to which we 
must connect the FPU. The HFPB-FPU slave device serves as a bridge 
between the HFPB and FPU protocols. It converts HFPB requests to FPU 
request and FPU responses back to HFPB responses.

The FPU block does not know about the HFPB protocol, so the bridge is 
necessary. In practice, it is common for slaves to be built with a specific bus 
protocol in mind. In that case, the bridge is subsumed by the FPU block. Also 
in that case, the top-level environment does not have to specifically 
instantiate it. For the purposes of building examples to highlight OVM 
concepts, we chose to make it separate to emphasize the point that there must 
be an explicit connection between blocks.

The block testbenches still contain their sequences. These can be turned on or 
off. You may want to turn them on initially to make sure that the blocks still 
work as expected when connected to the system. Later, you can turn them off 
to operate the system-level tests without additional clutter. Should some 
anomaly appear, you can turn on the block-level sequences again to ferret out 
a bug.

In addition to the block-level sequences that come with the testbenches, we 
have new system-level sequences that exercise the entire system. These are 
instantiated in the top-level environment and connected to the appropriate 
agents. These sequences represent additional functionality that uses the 
connected elements; whereas, the block-level sequences assume only their 
own environment.
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Figure 9-5  Connecting Testbenches

The code is surprisingly straightforward. There are only three components in 
the top-level environment; the two subordinate testbenches and the HFPB-
FPU slave. Only the test sequence is invoked; it will invoke sequences in the 
lower layers.

The FPU environment is the same as the one we saw in Chapter 7. It 
instantiates the agent and the reference model, and it instantiates the 
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sequence. The only difference is, we’ve added a configuration item, 
run_sequences, which determines whether to run the block-level sequence. 
This configuration switch lets the system-level testbench turn on or off the 
block-level sequences. The run_sequences switch is also in the HFPB 
environment for the same reason.

The build() function in the top-level environment has a number of things in 
it. We’ll walk through them.

193     function void build();
194   
195       set_config_int(“hfpb”, “run_sequences”, 1);
196       set_config_int(“fpu”, “run_sequences”, 0);
197   
198       set_config_int(“*”, fpu_slave_name, 1);
199   
200       addr_map.add_range(‘h000, ‘h00f, 1); // slave 1: fpu
201       addr_map.add_range(‘h010, ‘hfff, 0); // slave 0: mem
202   
203       set_config_object(“*”, “addr_map”, addr_map, 0);
204       set_config_int(“*”, “rand_iterations”, 500);
205       set_config_int(“*”, “mem_lower_bound”, ‘h80);
206   
207       hfpb = new(“hfpb”, this);
208       fpu = new(“fpu”, this);
209       fpu_slave = new(“fpu_slave”, this);
210   
211     endfunction
file: 09_block_to_system/02_expr/top.sv

First, we turn on the run_sequences switches for the subordinate 
environments.   Next, we set the slave name for the FPU slave so that we can 
map the name to a slave identifier. After that, we set up the address map. This 
was moved from the HFPB environment to the top-level environment. The 
address map is a global resource, and it must be set from a vantage point 
where all the slaves are known. Next, we configure the randomized memory 
sequence with the number of iterations to run and the lower bound of the 
memory space it operates in. Finally, we instantiate the components.

The structure of the run() task should be familiar by now—we call global 
stop_request() followed by a sequence invocation. The only difference is 
the call to set_global_stop_timeout() before starting the sequences. The 
reason for that call is that subordinate environments rely on their coverage 
collectors to tell them when to stop. The global timeout instructs the stops to 
be released after the timeout expires, regardless of whether all the stop()
tasks have returned.
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213     task run();
214       string s;
215   
216       ovm_report_info(“env”, “start”);
217   
218       seq = new();
219   
220       set_global_stop_timeout(10ms);
221       global_stop_request();
222       seq.start(hfpb.agent.sequencer);
223   
224       ovm_report_info(“env”, “finish”);
225   
226     endtask
file: 09_block_to_system/02_expr/top.sv

The global timeout is a safety valve that prevents the system from going into 
deadlock. If we turn off the block-level sequences, the system-level stimulus 
may not cover the blocks as expected. This is okay from a functional testing 
perspective, since the goal is to exercise the system, not specifically cover each 
block. However, the coverage information is still useful, so we leave coverage 
enabled. By setting the global stop timeout, we ensure that even if each 
block’s coverage threshold is not reached, the system will terminate properly.

The top-level environment also participates in the global stop shutdown 
mechanism.

230     task stop(string ph_name);
231       seq.wait_for_sequence_state(FINISHED);
232     endtask
file: 09_block_to_system/02_expr/top.sv

The stop() task waits until the sequence reaches the FINISHED state. 
wait_for_sequence_state() is a blocking call that returns when the state 
named in the argument is reached.

9.3 Testing at the System Level

The type of stimulus that we generate for system-level testing is different 
from what we use for block-level testing. At the block level, we are concerned 
about only a single block. At the system level, we have to consider the entire 
system. Furthermore, the system is more than just a collection of blocks; it has 
additional functionality implemented using the smaller blocks. When 
designing tests for the complete system, it’s reasonable to assume that each 
block has been tested thoroughly. After all, that’s what the block-level 
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testbench is for. You can assume that the necessary does-it-work and are-we-
done questions were asked and answered satisfactorily. 

So if each block is known to work correctly, then what’s left to test when they 
are connected? Well, plenty. While the blocks themselves may have been 
tested thoroughly, the interaction between them has not. It’s possible that a 
legal state in one block coincident with a legal state in another block may, in 
fact, constitute an illegal state. That is, a combination of states between each 
block may not be permitted. 

Depending on the nature of a particular block, it may not be possible to 
exhaustively cover each and every state in a block. When designing the block-
level stimulus and coverage model, you must draw lines about what is 
necessary to test and what is not. For example, in the FPU design, it’s not 
possible to cover every possible value of the A and B operands. Each is 32 bits 
for a total of 64 bits of operands. To generate all the unique values for 64 bits 
would take considerable time. Further, there is the intuitive notion that it’s not 
necessary to generate all those values. As a verification engineer, you have to 
figure out which values are significant and which are not. Later, when you 
integrate the block into a system, it’s entirely possible that components in the 
system driving your block may pass it a value that was not tested at the block 
level. Along those same lines, the particular sequence of state transitions that 
the block takes may be somewhat different than what was exercised in the 
block-level tests. In theory, the block-level tests have exercised everything of 
significance. Yet it’s still possible that a combination will occur in a system test 
that was not previously exercised.

It’s important to retain the block-level coverage collectors to see if anything 
interesting, based on the coverage model, occurred in the system that did not 
occur in the block-level tests. Along the same lines, it’s also important to keep 
the block-level scoreboards in place. These models determine whether the 
block functions correctly, which answers a does-it-work question. If they are 
reliable, then they can continue to monitor the operation of a block to flag any 
system-level failures. In the block-level testbenches in our example, the 
scoreboard and coverage collectors remain in place and are active.

Our small system is driven by a software element that compiles expressions. 
The stimulus we design for it must exercise the entire system and not 
necessarily focus on any particular block. Since the system is designed to 
parse and evaluate expressions, the stimulus problem becomes one of 
generating expressions and then evaluating them. To do that, we have a 
sequence that generates randomized ASCII strings, which represent valid 
expressions. Those expressions are passed through the chain of sequences 
until they become individual bus operations.
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Figure 9-6  System-Level Chain of Sequences

The RAND EXPR sequence is the primary stimulus generator; it generates the 
randomized expressions. It passes them to EXPR, which takes the source 
string and passes it to the compiler, which parses it and converts it to a 
program and a symbol table. A data structure containing the program and 
data structure is passed to PROC, the processor, which executes the program. 
In so doing, it generates both operand reads and writes and word reads and 
writes. Operand reads and writes are converted to word reads and writes. 
This chain of sequences, built on top of the combined testbench 
infrastructure, represents our system functionality. 

9.4 Summary

Integrating blocks into a system does not necessarily require rewriting 
testbench components. When you encapsulate protocol elements into a single 
agent and make sure that all components have well-defined interfaces, then 
you can easily connect block-level elements to form a system-level testbench. 
The block-level coverage collectors and scoreboards ensure that new, 
previously unforeseen stimulus is still counted and validated. Having reliable 
block-level testbench elements lets you focus on the system-level stimulus 
generation and functionality.
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Coding Conventions
Good code doesn’t happen by accident. It’s the product of a good architecture 
and careful execution. Coding conventions can help improve the quality of 
your code by giving clear advice on how to structure your code and make 
sure the details are consistent. 

10.1 Naming Scheme

Good quality code has a consistent look and feel. One of the ways to achieve a 
consistent look and feel is to use a consistent naming scheme. This section 
documents the naming scheme used for the examples in this book.

A name is constructed from three parts: the prefix, the main part, and the 
suffix. The main part of the name may consist of one or more words. All the 
parts—prefix, suffix, and words in the main part—are separated by 
underscores. Some sample names follow.

The following name has a main part of fifo and a prefix of tlm. 

tlm_fifo

The next one has all three parts, a prefix m_, a main part parent, and a suffix 
_p. 

m_parent_p

The following name has a main part with three words, but no suffix or prefix. 

finite_state_machine

M. Glasser, Open Verification Methodology Cookbook, DOI: 10.1007/978-1-4419-0968-8_10, 
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The next name also has no suffix or prefix, but the main part (top) consists of 
only one word.

top

The SystemVerilog OVM library is contained in a single package called 
ovm_pkg. The classes inside that package are prefixed with either ovm_ or 
tlm_. The reason for the tlm_ prefix is to match names in the OSCI TLM-1.0 
standard which, of course, is rendered in SystemC.

When you construct names, avoid abbreviations, use complete words 
whenever possible, and distinguish names by case. This method is called the 
general naming scheme, and it forms the basis for the rest of the kind-specific 
naming schemes. A name should also identify the kind of thing it’s naming. 
Below are rules for specific kinds of names:

class names

Class names use the general naming scheme. Classes that are part 
of a specific package or library should use the same prefix for all 
members of the package or library.

ovm_analysis_port
tlm_fifo

local variables

Local variables use the general naming scheme but have no 
prefix. They may have suffixes depending on the kind of object 
being named.

integer indexes

Use i, j, k for integer indexes. This is one place where single 
letter variable names are acceptable.

int i; 
int j; 
for(i = 0; i < last; i++) 
{ 

for(j = i; j < last; j++) 
matrix[i,j] = compute_entry(i,j); 

}

class members

Class members are another form of local variable. Instead of 
being local to a function or task, they are local to a class. To 
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distinguish class members from local variables in a function, task, 
or method, use the local variable convention and add a prefix of 
m_.

class pc_bus_request
addr_t m_address;
data_t m_data;
request_t m_request_type;

endclass : bus_request

class methods

For class methods, use a different prefix from the enclosing class, 
and group common methods with the same prefix.

class pc_bus_request
addr_t m_address;
data_t m_data;
function set_addr(addr_t a);
endfunction
function set_data(addr_t a);
endfunction

endclass : pc_bus_request

local variables with suffixes

It greatly improves the readability of a program if you are able to 
quickly understand something about the type or kind of object 
you are looking at in an expression without having to refer to the 
declaration.

pointers

Pointers appear in SystemC but not in SystemVerilog. Pointers 
use the local variable naming scheme and have a suffix of _p. 

handles

Handles appear in SystemVerilog but not in SystemC. All 
instances of a class in SystemVerilog are referenced using class 
handles. Use the local variable naming scheme, and if no other 
suffix applies, add the _h suffix. 

type names

For type names that are created with typedef, use the local 
variable convention and add the _t suffix.

typedef unsigned long int addr_t;
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typedef sc_lv<16> bus_t;
typedef sc_port< sc_signal_in_if< sc_uint<32> > >

   bus_in_port_t;
typedef struct {bit [7:0] value} data_t;

function/task/method names and formal arguments

Functions, tasks, and methods (and their formal arguments) use 
the same convention as local variables—no prefixes or suffixes. A 
formal argument may be abbreviated if the abbreviation is 
derived from its type.

function send(trasanction_t t, string parent);

macros

Macros are all uppercase letters, and words are separated by 
underscores. Distinguish between a macro and a named constant 
in SystemC. Macros are simply text to be substituted at the 
appropriate point in a program using a preprocessor. Named 
constants are constant values with a name known to the compiler 
and to the debugger.

#define MAX_SIZE 100
#define TRANSPORT(req,rsp) send(req);rsp=recv();

parameters

Parameters are all uppercase letters, and words are separated by 
underscores. An abbreviation may be used if it is derived from its 
type. In SystemVerilog, parameters or localparams are preferred 
over macros to reduce order-of-compilation issues.

parameter type T = int;
localparam MAX_SIZE = 100;

enumeration types and enumeration members

Enums need a suffix only if used as a defined type. In that case, 
use _e. For example:

typedef {mode_unidir, mode_bidir, mode_off} mode_e;

The members of enumerated types should have a common prefix 
that indicates their type.

enum {color_red, color_blue, color_green} color;
typedef enum {req_read, req_write, req_idle} req_e;
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interfaces
modports have the _mp suffix
interfaces have the _if suffix
virtual interfaces have the _vif suffix

interface bus_if;
...
endinterface : bus_if

virtual bus_if bus_vif;

class bus_if : public sc_interface
{

161...
};

packages

Packages have the _pkg suffix. The main part of the package 
name should be the basis for the prefix of the names within the 
package.

ports

Transaction-level ports should use the same naming conventions 
as formal arguments to a function. Transaction-level ports should 
use the suffix _port or _export, as appropriate. Use _ap as a 
suffix for analysis ports. If you have only one analysis port in a 
module, which is quite common, just name it ap with no suffix or 
prefix.

sc_export<control_if> ctrl_export;
analysis_port error_ap, good_ap;

10.2 Global or Local?

In an object-oriented program, it’s not always obvious in which scope to put 
variables. For each variable, the answer to that question depends on the 
lifetime of the variable and who will have access to it. In general, you want to 
make variables that are in the inner-most scope possible and as local as 
possible. The idea is that the more available you make variables, the more 
likely some method, class, or module other than what you intend will modify 
the variable, possibly with adverse consequences. This is a continuation of the 
data-hiding concepts discussed in Chapter 2.

The remainder of this section offers guidelines to aid your decision-making 
about where to put a declaration.
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Class Interfaces.  The interface to a class, the methods that enable external 
users to operate an object, should be public. Everything else should be local 
(private). Variables should all be private. If it’s necessary to access them 
externally, this should be done with accessor functions, functions whose entire 
role is to provide read or write access to a class member. Consider as an 
example the following code:

class some_class;

local int a;

function void set_a(int a_arg);
if(a_arg & 1) begin

$display(“a must be even”);
return;

end
a = a_arg;
endfunction

function int get_a();
return a;

endfunction

...
endclass

The class some_class has two accessor functions, set_a() and get_a(). 
These functions guarantee that the variable a is accessed in only the allowed 
manner and no other way. set_a() guarantees that a is always set to an even 
value. It’s not possible to set a to a value that’s not even.

There are some exceptions to the rule that all variables should be private. One 
exception is for component ports and exports. These must be public so that 
external components can connect to them. The internal variables of these 
objects are private, so we still have preserved data-hiding. Another exception 
is for transactions. This exception is more subjective, and application of 
accessor functions should still be considered. The following transaction has a 
number of internal fields.

class trans extends ovm_transaction;
bit [7:0] data
bit [15:0] addr;
int target;
operator_e op;
status_e status;

endclass
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Since the purpose of the transaction object is to deliver data from one 
component to another, it can be a bit overly verbose and somewhat 
inconvenient to create a set_*() function and a get_*() function for each 
member. Providing both a set_target(), which assigns a value to target, 
and get_target(), which retrieves a value from target, for example, is 
semantically equivalent to just using assignment statements to modify or 
retrieve the value of target. In that case, the accessor functions provide no 
value. Consider a different example:

class packet extends ovm_transaction;
int target;
local bit [7:0] payload [255];
local bit [15:0] error_correction_code;

function void set_payload(bit [7:0] p [255]);
payload = p;
compute_error_correction_code();

endfunction

function bit [15:0] get_error_correction_code();
return error_correction_code;

endfunction
endclass

The class packet has a set_payload() accessor function, which not only sets 
the value of payload, it also computes the error correction code associated 
with the payload. The class does not provide a way to set the value of 
error_correction_code, which is local, except by setting the payload and 
computing a new error correction code. The set_payload() accessor is 
responsible not only for assigning a variable, but also for computing another 
(local) member in the class.

Loop Variables.  It’s best to keep loop variables in the function in which they 
are used, even in the loop scope. SystemVerilog provides a way to declare a 
loop variable at the top of the loop in which it is used. You should use this 
when you can.

for (int i; i < 100; i++) begin
...

end

Here, the loop variable is declared in the inner-most scope possible. If you 
have several loops in the same function, it’s better to declare the loop 
variables once and not have to repeat the declarations. Besides saving a bit of 
typing, it guarantees that the type is consistent.
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int unsigned i;

for(i = 0; i < max; i++) begin
...

end

for(i = 0; i < max; i++) begin
...

end

In any case, there’s no reason to declare loop variables as class members. They 
should be in the function in which they are used. Even if you have multiple 
functions with loops, declare the loop variables in the functions. This removes 
the implication that the loop variables have anything to do with the other 
members in the class. It also prevents sharing problems in the event tasks 
with processes try to share the same loop variable.

Global Variables.  Should you ever use global variables? Well, usually not. If 
you find yourself making a variable global, think about it carefully before you 
commit. The main problem with global variables is that they are not 
threadsafe. That is, two threads can be updating a global variable, 
unbeknownst to each other. Consider two threads, A and B, each of which 
maintains a global variable called X. A computes a value for X and assigns it 
to X accordingly. B now computes a new value and assigns it to X. Since A 
believes X to be a different value, it can make some assumptions, which, 
because X has changed values, are now wrong.

There are times when global variables make sense. In OVM, we have the 
global report server, for example. It’s important for this variable to be global 
because it must be accessible everywhere. We prevent multiple copies of the 
report server from being created by making it a singleton object. We can get 
away with it being global because the report server has only functions, no 
tasks, so there is no possibility of any operation on the report server blocking 
or consuming time. So, all operations can be considered atomic. All access to 
the report server is through those functions, so there is no opportunity for 
multiple clients to create a conflict by setting variables in unexpected ways.

10.3 Objects

The OVM base class library defines a collection of objects of various types. 
This section presents some recommendations for coding those objects in a 
consistent manner.
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10.3.1 Components

Components, objects derived from ovm_component, are one of the essential 
elements of an OVM testbench. Generally, your testbench will be constructed 
as a collection of interconnected components. So, it’s important to organize 
components consistently. Within components, the primary organization is the 
set of phase callback functions. Schematically, it is best to organize 
components by putting items in a well-defined order.

1. declaration macro(s)
2. external interfaces
3. internal channels
4. configuration items—variables whose values are obtained 

through the configuration system
5. local variables
6. constructor
7. phase callbacks
8. local methods

Here’s an example: 

class my_component extends ovm_component;

‘ovm_component_utils

// external interfaces
ovm_get_port#(trans) get_port;

// internal channels
tlm_fifo#(trans) fifo;

// configuration items
int unsigned size;

// local variables
int i, j;

// constructor
function new(string name, ovm_component parent);

super.new(name, parent);
endfunction

// phase callbacks
function void build();
endfunction

function void connect();
endfunction
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function void end_of_elaboration();
endfunction

function void start_of_simulation();
endfunction

task run();
endtask

function void extract();
endfunction

function void check();
endfunction

function void report();
endfunction

// local methods
task send_to_bus();
endtask

endclass

The macro ‘ovm_component_utils generates some boilerplate code that is 
useful in all components. It creates the following code:

Factory registration
get_type() function
get_type_name() function

For parameterized components, use ‘ovm_component_param_utils instead. 
The difference is that ‘ovm_component_utils provides the 
get_type_name() function and registers the component with the string-
based factory as well as the type-based factory. The 
‘ovm_component_param_utils assumes that it’s not possible to create a 
unique string for a parameterized class, so it doesn’t try. Instead, it just 
registers the component with the type-based factory and creates the 
get_type() function, but not the get_type_name() function.

Components have a standard constructor with a name and parent argument. 
Resist the temptation to add parameters to the constructor. Instead, use the 
configuration facility to pass data into a component. That way, you won’t 
create an unnecessary dependency between a component and where it is 
instantiated. Furthermore, the factory is set up to create components using 
name and parent arguments, it currently does not support arbitrary 
arguments.
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The build() function is a good place to retrieve configuration items. Since 
build is a top-down phase, it’s also a good place to set configuration 
information to be passed to subordinate components. Construct your build 
function with get_config_* calls first, followed by instantiations of 
subordinate components, followed by set_config_* calls. Retrieving 
configuration items before instantiating subordinate components allows you 
to use the configuration information when constructing those components. 
Thus, you can create configurable topologies.

10.3.2 Sequences

Sequences are another kind of object that will contain a lot of your testbench 
code. Just like with components, organizing the code inside the class in a 
consistent manner will help you and others reading the code to find things 
and understand the structure easily. Code the items in a sequence in the 
following order:

1. ‘ovm_sequence_utils macro
2. declaration for child sequences
3. local variables
4. pre_body() task
5. body() task
6. post_body() task
7. response handler
8. local methods

10.3.3 Transactions and Sequence Items

Components are persistent structural objects; that is, they are created at the 
beginning of simulation and persist until the end. Sequences are semi-
persistent; they remain in place until the body() task completes. This could 
be long enough to send a single sequence item or for the duration of the entire 
simulation. Transactions and sequence items are transient. They carry 
information between components and are released to be garbage collected 
once they deliver their payload. During their trip through the system, these 
objects can be copied, cloned, compared, or printed. So, they need methods to 
perform these functions. The ingredients that go in sequence items and 
transactions, in order, are:

1. ‘ovm_object_utils or ‘ovm_object_param_utils macro
2. this_type typedef
3. copy function
4. clone function
5. print function
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6. compare function

The this_type typedef is useful for parameterized classes. You can use 
this_type in all the places where the class type is needed, and doing so can 
improve the clarity of the code in the case where there are multiple 
parameters. For example:

class trans#(type T=int, type R=int, int unsigned I=0)
extends ovm_transaction;

typedef trans#(T, R, I) this_type;

...

endclass

Here’s what a prototypical transaction looks like:

class transaction#(type T=int) extends ovm_transaction;

typedef transaction#(T) this_type;

// declare transaction members here

function ovm_object clone();
this_type t = new;
t.copy(this);
return t;

endfunction
  

function void copy(input this_type t);
endfunction

  
function bit comp(input this_type t);
endfunction

  
function string sprint();

string s;
$sformat(s, ...);
return s;

endfunction

endclass

10.4 Packages

Packages in SystemVerilog provide a means for creating distinct namespaces. 
This is a powerful tool for managing large bodies of code. You can collect 
groups of related classes and types and make them available as single entities. 
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Using packages, you can maintain separation between these groups. You can 
hide objects and types that are needed for the implementation of the visible 
members but themselves are not visible. Use packages liberally to prevent 
unintentional interactions among objects and to simplify things for those who 
use your testbench components.

The package name itself is in the global namespace, but the items contained 
inside the package are in their own namespace. To make an item (or symbol) 
visible outside the package, you must import it. For example, to import an 
item called driver from my_package, use the following statement.

import my_package::driver;

To import all the symbols in my_package, use an asterisk (*).

import my_package::*;

This approach provides considerable control over the visibility of symbols 
and makes it obvious in programs that use packages whose symbols are “in 
play.”

Even though the package forms a namespace, prefix all the symbols that will 
be visible externally (that is, those that users can import) with a common 
prefix. For example, all of the symbols in the OVM package have the prefix 
ovm_ (with a few minor exceptions).

All of the components for a protocol should logically be grouped together, 
and you can use a package to form this grouping. The package can also 
contain any types or objects that are shared among the components in the 
package and which may not be externally visible. A good way to achieve this 
objective is to put each component in a single file and to ‘include those files 
in a package shell.

package abc_pkg;
‘include “abc_common.svh”
‘include “abc_driver.svh”
‘include “abc_monitor.svh”
‘include “abc_agent.svh”

endpackage

The package shell is put into its own file. The file abc_common.svh contains 
code that is common among the other components in the packages but might 
not be used directly by the user of the package.
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10.5 Comments

Comments are the most subjective of coding style elements. Most 
programmers have their own feelings about what makes a good comment 
style. However you use comments, they should enhance the clarity and 
readability of the code and not obfuscate it. Here are some simple rules for 
making comments enhance your code and not detract from it.

Don’t replicate code in your comments. In other words, don’t 
state the obvious.

The comment here is unnecessary:

// Add one to counter
counter = counter + 1

Put a comment header on each class and on major functions, par-
ticularly interface methods in classes.

This is a convenient place to summarize the role of the class or 
method and an obvious place to look when reading code to find 
out what the class or method does.

//------------------------------------------------------------
// env
//
// Top-level environment. Contains the bus agent and
// instantiates the test.
//------------------------------------------------------------
class env extends ovm_component;
...
endclass

Explain passages that implement complex or non-obvious algo-
rithms.

When you look at code that you have written and you find 
yourself having to spend a few minutes to reconstruct your 
thinking in order to understand what a particular passage is 
doing, then it is likely that this piece of code warrants a comment.

10.6 Summary

A good coding style that includes conventions for data and file names; use of 
globals, constants, statics, ports and exports; and all the other ingredients 
discussed in this chapter contributes to making the code accessible and can 
greatly aid the integration of code written by different programmers. When 



Summary 211
multiple engineers are working together on the same project, agreed-upon 
conventions will save considerable time and stress when it’s time to combine 
the ingredients in a single recipe (system).

Just like any writing, when you apply a consistent style to your code, you 
improve the ability for someone reading it to understand it quickly and 
accurately. That person might be you!
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Afterword
Verifying a complex system is a non-trivial problem. It requires a deep 
understanding of software engineering and electrical engineering, as well as 
extensive knowledge of the system being verified and the protocols it uses to 
communicate with the external world. Additionally, it requires some 
creativity and guile to design tests that effectively exercise the DUT to prove 
that it works correctly. 

This text has presented the essential elements of the OVM—components, 
transaction-level interfaces, ports and exports, sequences, and so forth—that 
you can use to design and construct testbenches. The OVM is not just a library 
of parts; it is also a methodology for approaching complex verification 
problems. However, the methodology is just a starting point. There is a lot of 
room for creative application of the OVM. Every design house and design 
team has its own styles and conventions for building systems, and every 
design, even those derived from other designs, has its own unique 
verification challenges. So testbench architectures will vary widely based on 
the nature of the design, the verification requirements, the culture and 
training of the verification team, and the history of the project.

The methods and techniques expressed in this text are not dogma; rather they 
are a conceptual framework for experimentation and development of new 
methods and techniques. I encourage readers to explore new ways to apply 
the OVM to your own verification problems. Further, I encourage readers to 
exchange ideas on www.ovmworld.org. Open discussion and exchange will 
help to advance the OVM, which in turn will help to improve verification 
practice.

The Verification Methodology team at Mentor Graphics closely monitors the 
discussion on www.ovmworld.org and will respond to questions and bug 
reports and will participate in discussions there. If you wish to communicate 
directly with the team, you can do so by sending E-mail to 
OVM_Cookbook@mentor.com.
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Graphic Notation
Throughout this book we illustrate examples with diagrams that show 
verification components and their interconnections. We use a schematic-like 
notation for these diagrams that combines both data flow and control flow 
concepts. 

Traditional RTL schematic notation is data-flow oriented. Components have 
pins connected by nets. Pins have direction—they can be inputs, outputs, or 
bidirectional—and they must be connected to other compatible pins. For 
example, an output of one component must be connected to an input of 
another component. In systems that have transaction-level components, we 
need to describe control flow as well as data flow. Transaction-level models are 
constructed of function calls. Activity generated as functions in one 
component will call functions in other components. Control flow refers to 
who calls whom.

Connecting separate components through well-defined interfaces is a key 
tenet of the OVM, and those ideas are reflected in our notation. The graphical 
notation has three parts: components, interfaces, and interconnect.

A.1 Components

A component is represented using a box.
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Figure A-1  Component Symbol

Components are objects such as modules, interfaces, program blocks, or 
classes that can be instantiated. Components often have free running threads. 
Sometimes, knowing the location of threads in a design or testbench is 
important to understanding the design. To show a component that has one or 
more threads, we use a circular arrow.

Figure A-2  A Component with a Thread

A.2 Interfaces

Interfaces are the externally visible connections to components. All of a 
component’s behavior is accessible and visible only through its interfaces. 
First, is the familiar pin interface.

Figure A-3  A Component with a Pin Interface

The small black boxes on the right side of the component represent pins. 
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Whereas pin interfaces move data represented at the bit level between 
components, transaction interfaces move high-level data between 
components.

Figure A-4  Transaction-Level Interfaces

Figure A-4 represents two variations of transaction interfaces: a port and an 
export. The component on the left has a transaction port and the component 
on the right has an export. An export represents the provides sides of an 
interface and a port represents the requires side. A good way to think about 
transaction ports is as a set of unresolved function calls that are resolved by 
exports. Ports and exports are complements of each other; ports connect to 
exports. You cannot connect an export to an export or a port to a port.

The port/export notation identifies the flow of control between components. 
Since a port interface calls functions on an export, flow of control moves from 
ports to exports.

A.3 Interconnect

Just like with traditional schematics, we use lines between interfaces to show 
the interconnection amongst components. The addition of arrow heads 
allows us to represent data flow.

Figure A-5  Pin-Level Data Flow

exportport

A B
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Arrows between pins show the direction data flows between components. 
The figure above shows, from top to bottom, flow from A to B, bidirectional 
flow between A and B, and flow from B to A. 

Figure A-6  Transaction Data Flow

Figure A-6 illustrates two configurations, each with the same transaction 
interfaces, but with different data flow. In both configurations, a function in B 
is invoked by A; that is, A initiates activity in B. A is the initiator and B is the 
target. In the top configuration, A moves data to B. This is called a put
operation. In the bottom configuration, A moves data from B back to itself. 
This is called a get operation. 

A.4 Channels

Transaction-level components often communicate through channels. A 
channel is a component that defines the semantics of the communication. One 
of the most common channels used is a FIFO. FIFOs are used to throttle 

A B

A B

put configuration

get configuration
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communication between two transaction-level components. To show this in a 
netlist, we show a small box between components to represent the FIFO.

Figure A-7  Two Components Communicating through a FIFO

A FIFO, as with other communication channels, exports an interface. 
However, in the interest of keeping the diagram uncluttered, the circles on the 
channel exports are optional and often omitted. Just like vowels in Hebrew, 
exported interfaces on channels are obvious to conversant readers.

Figure A-7 shows two components, each with its own thread, and each with a 
transaction port that connects to an intervening channel. Component A puts 
transactions into the FIFO channel, and component B gets transactions from 
the same channel. The data flow arrows, in addition to the transaction ports, 
tell us which components are doing gets and which are doing puts. A has a 
thread, a transaction port (as opposed to an export), and an arrow leading 
away from it. That tells us that A is putting transactions into the channel. B 
also has a thread and a transaction port, but the data flow arrow is leading 
into the component instead of away from it. That tells us that B is getting 
transactions from the channel.

A.5 Analysis Ports

Analysis ports are a kind of transaction-level port used for communicating 
information between components involved in the operation of the DUT and 
components used to analyze activity. The symbol for an analysis port is a 
diamond. Analysis ports are connected to a component with an analysis 

fifo `

A B
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interface. This could be an analysis FIFO or a component with an analysis 
interface. 

Figure A-8  Analysis Port Connected to an Analysis Interface

A.6 Summary

The OVM graphic notation is an extension to traditional RTL schematic 
notation. The extensions let us show transaction-level components, such as 
initiators, targets, interfaces, and channels, along with control and data flow 
between components. Using this notation, we can combine transaction-level 
and RTL components on the same diagram, which is important for 
diagramming testbenches.

A B

Analysis port

Analysis interface
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